cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A091513 Numbers k such that (2^k + 1)^2 - 2 = 4^k + 2^(k+1) - 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 9, 12, 15, 17, 18, 21, 23, 27, 32, 51, 65, 87, 180, 242, 467, 491, 501, 507, 555, 591, 680, 800, 1070, 1650, 2813, 3281, 4217, 5153, 6287, 6365, 10088, 10367, 37035, 45873, 69312, 102435, 106380, 108888, 110615, 281621, 369581, 376050, 442052, 621443, 661478
Offset: 1

Views

Author

Eric W. Weisstein, Jan 17 2004

Keywords

Crossrefs

Cf. A091514 (primes of the form (2^n + 1)^2 - 2).
Cf. A093069 (numbers of the form (2^n + 1)^2 - 2).

Programs

Formula

A093069(n) = (2^a(n) + 1)^2 - 2.

Extensions

a(41) from Eric W. Weisstein, Feb 27 2004
a(42) to a(44) from Eric W. Weisstein, Jun 05 2004
Edited by Ray Chandler, Nov 15 2004
a(46) from Cletus Emmanuel (cemmanu(AT)yahoo.com), Oct 07 2005
a(47)-a(48) from Eric W. Weisstein, Feb 10 2016 (computed by Mark Rodenkirch)
a(49)-a(50) from Eric W. Weisstein, Jun 08 2016 (computed by Mark Rodenkirch)
a(51) from Eric W. Weisstein, Jun 19 2016 (computed by Mark Rodenkirch)

A091514 Primes of the form (2^n + 1)^2 - 2 = 4^n + 2^(n+1) - 1.

Original entry on oeis.org

2, 7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359, 17180131327, 68720001023, 4398050705407, 70368760954879, 18014398777917439, 18446744082299486207, 5070602400912922109586440191999
Offset: 1

Views

Author

Eric W. Weisstein, Jan 17 2004

Keywords

Comments

Cletus Emmanuel calls these "Kynea primes".

Crossrefs

Cf. A093069 (numbers of the form (2^n + 1)^2 - 2).
Cf. A091513 (indices n such that (2^n + 1)^2 - 2 is prime).

Programs

Formula

a(n) = (2^A091513(n) + 1)^2 - 2.

Extensions

Edited by Ray Chandler, Nov 15 2004
First term (2) added by Vincenzo Librandi, Dec 13 2011

A093112 a(n) = (2^n-1)^2 - 2.

Original entry on oeis.org

-1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527, 4190207, 16769023, 67092479, 268402687, 1073676287, 4294836223, 17179607039, 68718952447, 274876858367, 1099509530623, 4398042316799, 17592177655807, 70368727400447, 281474943156223, 1125899839733759
Offset: 1

Views

Author

Eric W. Weisstein, Mar 20 2004

Keywords

Comments

Cletus Emmanuel calls these "Carol numbers".

Crossrefs

Cf. A000225.

Programs

Formula

a(n) = (2^n-1)^2 - 2.
From Colin Barker, Jul 07 2014: (Start)
a(n) = 6*a(n-1) - 7*a(n-2) - 6*a(n-3) + 8*a(n-4).
G.f.: x*(16*x^2-14*x+1) / ((x-1)*(2*x-1)*(4*x-1)). (End)
E.g.f.: 2 - exp(x) - 2*exp(2*x) + exp(4*x). - Stefano Spezia, Dec 09 2019

Extensions

More terms from Colin Barker, Jul 07 2014

A360994 Numbers k such that (2^k + 1)^3 - 2 is a semiprime.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 13, 14, 18, 27, 43, 45, 63, 76, 85, 108, 115, 119, 123, 187, 211, 215, 283, 312
Offset: 1

Views

Author

Serge Batalov, Feb 27 2023

Keywords

Comments

a(25) >= 355.
623, 674, 711, 766, 767 are also in this sequence, but their position cannot be established before finding any factor for the values corresponding to the following "blockers": 355, 511, 587, 707, 731.
1424, 1470, 1580, 1946, 2117, 2693, 3000, 3540, 4164, 7043, 9475, 10632, 15018, 19064, 27130, 28266, 28532, 46434, 58768, 103536 are some larger members of this sequence, but their position cannot be established. These produce "trivial" semiprimes where one prime is small (e.g., 3 or 5).

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [1..70]| IsSemiprime(s) where s is (2^n+1)^3-2];
    
  • Mathematica
    Select[Range[70], PrimeOmega[(2^# + 1)^3 - 2] == 2 &]
  • PARI
    isok(n) = bigomega((2^n+1)^3-2) == 2;

Formula

{ k >= 0 : A099359(k) in { A001358 } }.

A100496 Numbers n such that (2^n+1)^4-2 is prime.

Original entry on oeis.org

1, 7, 25, 31, 34, 271, 514, 2896, 8827, 16816, 37933
Offset: 1

Author

Jonathan Vos Post, Nov 23 2004

Keywords

Comments

Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019
a(12) > 60000. - Tyler Busby, Feb 12 2023

Examples

			a(1) = 1 because (2^1+1)^4 - 2 = 79 is prime and is the first such prime.
		

Crossrefs

Cf. A100497, n such that (2^n+1)^4-2 is semiprime.

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[(2^# + 1)^4 - 2] &]
  • PARI
    is(n)=ispseudoprime((2^n+1)^4-2) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Edited, corrected and extended by Ray Chandler and Hugo Pfoertner, Nov 26 2004
a(10)-a(11) from Tyler Busby, Feb 12 2023

A244663 Binary representation of 4^n + 2^(n+1) - 1.

Original entry on oeis.org

111, 10111, 1001111, 100011111, 10000111111, 1000001111111, 100000011111111, 10000000111111111, 1000000001111111111, 100000000011111111111, 10000000000111111111111, 1000000000001111111111111, 100000000000011111111111111, 10000000000000111111111111111
Offset: 1

Author

Colin Barker, Jul 08 2014

Keywords

Examples

			a(3) is 1001111 because A093069(3) = 79 which is 1001111 in base 2.
		

Crossrefs

Cf. A093069.

Programs

  • Magma
    [-1/9 + 10^(1 + n)/9 + 100^n : n in [1..15]]; // Wesley Ivan Hurt, Jul 09 2014
  • Maple
    A244663:=n->-1/9+10^(1+n)/9+100^n: seq(A244663(n), n=1..15); # Wesley Ivan Hurt, Jul 09 2014
  • Mathematica
    Table[-1/9 + 10^(1 + n)/9 + 100^n, {n, 15}] (* Wesley Ivan Hurt, Jul 09 2014 *)
    LinearRecurrence[{111,-1110,1000},{111,10111,1001111},20] (* Harvey P. Dale, Dec 11 2014 *)
  • PARI
    vector(100, n, -1/9+10^(1+n)/9+100^n)
    
  • PARI
    Vec(-x*(2000*x^2-2210*x+111)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100))
    

Formula

a(n) = -1/9+10^(1+n)/9+100^n.
a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3).
G.f.: -x*(2000*x^2-2210*x+111) / ((x-1)*(10*x-1)*(100*x-1)).

A268574 Numbers k such that (2^k + 1)^2 - 2 is a semiprime.

Original entry on oeis.org

4, 6, 7, 10, 11, 14, 22, 36, 38, 39, 44, 45, 48, 49, 60, 72, 74, 75, 89, 92, 96, 99, 105, 110, 111, 113, 116, 131, 138, 143, 150, 170, 173, 182, 194, 201, 212, 234, 260, 282, 300, 317, 335, 341, 345, 383, 405
Offset: 1

Author

Vincenzo Librandi, Feb 21 2016

Keywords

Comments

a(48) >= 428. - Serge Batalov, Feb 25 2023

Examples

			a(1) = 4 because 17^2 - 2 = 287 = 7*41, which is semiprime.
a(2) = 6 because 65^2 - 2 = 4223 = 41*103, which is semiprime.
		

Programs

  • Magma
    IsSemiprime:=func; [n: n in [1..110]| IsSemiprime(s) where s is (2^n+1)^2-2];
    
  • Mathematica
    Select[Range[105], PrimeOmega[(2^# + 1)^2 - 2] == 2 &]
  • PARI
    isok(n) = bigomega((2^n+1)^2-2) == 2; \\ Michel Marcus, Feb 22 2016

Extensions

a(25)-a(39) from Hugo Pfoertner, Aug 05 2019
a(40)-a(41) from chris2be8@yahoo.com, Feb 25 2023
a(42)-a(47) from Serge Batalov, Feb 26 2023

A130567 Expansion of x*(2 - 7*x + 2*x^2)/((1-x)*(1-4*x)*(1-2*x)).

Original entry on oeis.org

2, 7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623, 4198399, 16785407, 67125247, 268468223, 1073807359, 4295098367, 17180131327, 68720001023, 274878955519, 1099513724927, 4398050705407, 17592194433023, 70368760954879
Offset: 1

Author

Roger L. Bagula, Aug 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_Integer?Positive] := f[n] = 2^(2*n - 1) + 2*f[n - 1] + 1; f[0] = 2; Table[f[n], {n, 0, 30}]
    CoefficientList[Series[x*(2-7x+2x^2)/((1-x)(1-4x)(1-2x)),{x,0,30}],x] (* Harvey P. Dale, Sep 07 2015 *)

Formula

a(n) = 2^(2*n - 1) + 2*a(n - 1) + 1.
From R. J. Mathar, Jun 13 2008: (Start)
O.g.f.: x*(2 - 7*x + 2*x^2)/((1-x)*(1-4*x)*(1-2*x)).
a(n) = A093069(n-2), n>1. (End)

Extensions

New name from Joerg Arndt, Feb 08 2015
Showing 1-8 of 8 results.