cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A061444 Decimal expansion of log(2 * Pi).

Original entry on oeis.org

1, 8, 3, 7, 8, 7, 7, 0, 6, 6, 4, 0, 9, 3, 4, 5, 4, 8, 3, 5, 6, 0, 6, 5, 9, 4, 7, 2, 8, 1, 1, 2, 3, 5, 2, 7, 9, 7, 2, 2, 7, 9, 4, 9, 4, 7, 2, 7, 5, 5, 6, 6, 8, 2, 5, 6, 3, 4, 3, 0, 3, 0, 8, 0, 9, 6, 5, 5, 3, 1, 3, 9, 1, 8, 5, 4, 5, 2, 0, 7, 9, 5, 3, 8, 9, 4, 8, 6, 5, 9, 7, 2, 7, 1, 9, 0, 8, 3, 9, 5, 2, 4
Offset: 1

Views

Author

Frank Ellermann, Jun 11 2001

Keywords

Comments

Used in formulas for gamma(x), e.g., in Stirling's approximation for m!.
Also decimal expansion of zeta'(0)/zeta(0). - Benoit Cloitre, Sep 28 2002
The value of log(2*Pi) is close to 1 + Sum_{n>=2} log(zeta(n)) = 1.83067035427178011248.... - Arkadiusz Wesolowski, Jul 17 2011

Examples

			1.837877066409345483560659472811235279722794947275566825634303...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Log[2*Pi], 100]][[1]] (* Arkadiusz Wesolowski, Aug 29 2011 *)
  • PARI
    { default(realprecision, 20080); x=log(2*Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b061444.txt", n, " ", d)) } \\ Harry J. Smith, Jul 22 2009

Formula

Equals A002162 + A053510 = A131659 - A094642. - R. J. Mathar, Aug 27 2011
Equals 1 + Sum_{k>=1} zeta(2*k)/(k*(2*k + 1)). - Amiram Eldar, Aug 20 2020

A257817 Decimal expansion of the real part of li(i), i being the imaginary unit.

Original entry on oeis.org

4, 7, 2, 0, 0, 0, 6, 5, 1, 4, 3, 9, 5, 6, 8, 6, 5, 0, 7, 7, 7, 6, 0, 6, 1, 0, 7, 6, 1, 4, 1, 2, 7, 8, 3, 6, 5, 0, 7, 3, 3, 0, 5, 4, 3, 0, 1, 8, 3, 6, 1, 8, 8, 1, 8, 6, 8, 3, 8, 3, 7, 1, 8, 9, 9, 3, 8, 5, 8, 0, 3, 7, 7, 6, 9, 5, 3, 1, 3, 0, 8, 5, 0, 9, 3, 3, 7, 9, 7, 0, 7, 6, 0, 4, 9, 2, 9, 2, 1, 2, 0, 0, 1, 5, 3
Offset: 0

Views

Author

Stanislav Sykora, May 10 2015

Keywords

Comments

li(x) is the logarithmic integral function, extended to the whole complex plane. The corresponding imaginary part is in A257818.

Examples

			0.47200065143956865077760610761412783650733054301836188186838371...
		

Crossrefs

Programs

  • Maple
    evalf(Re(Li(I)),120); # Vaclav Kotesovec, May 10 2015
  • Mathematica
    RealDigits[Re[LogIntegral[I]], 10, 120][[1]] (* Vaclav Kotesovec, May 10 2015 *)
  • PARI
    li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
      if(imag(c)<0, return(-Pi*I-eint1(-log(c))),
      return(+Pi*I-eint1(-log(c)))); }
      a=real(li(I))

Formula

Equals gamma + log(Pi/2) + Sum_{k>=1}((-1)^k*(Pi/2)^(2*k)/(2*k)!/(2*k)).
Equals Ci(Pi/2), the maximum value of the cosine integral along the real axis. - Stanislav Sykora, Nov 12 2016

A256358 Decimal expansion of log(sqrt(Pi/2)).

Original entry on oeis.org

2, 2, 5, 7, 9, 1, 3, 5, 2, 6, 4, 4, 7, 2, 7, 4, 3, 2, 3, 6, 3, 0, 9, 7, 6, 1, 4, 9, 4, 7, 4, 4, 1, 0, 7, 1, 7, 8, 5, 8, 9, 7, 3, 3, 9, 2, 7, 7, 5, 2, 8, 1, 5, 8, 6, 9, 6, 4, 7, 1, 5, 3, 0, 9, 8, 9, 3, 7, 2, 0, 7, 3, 9, 5, 7, 5, 6, 5, 6, 8, 2, 0, 8, 8, 8, 7, 9, 9, 7, 1, 6, 3, 9, 5, 3, 5, 5, 1, 0, 0, 8, 0, 0, 0, 4
Offset: 0

Views

Author

Jean-François Alcover, Mar 26 2015

Keywords

Comments

Equals the derivative of the Dirichlet eta function at x=0. - Stanislav Sykora, May 27 2015

Examples

			0.22579135264472743236309761494744107178589733927752815869647153...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Sqrt[Pi/2]], 10, 105] // First
    RealDigits[DirichletEta'[0], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
  • PARI
    log(sqrt(Pi/2)) \\ G. C. Greubel, Jan 09 2017

Formula

Given the harmonic sum G(x) = Sum_{k>=1} (-1)^k*log(k)*exp(-k^2*x), lim_{x->0} G(x) = log(sqrt(Pi/2)).
Integral_{x=0..oo} G(x) dx = (Pi^2/12)*log(2) + zeta'(2)/2 = (Pi^2/12)*(EulerGamma + log(4*Pi) - 12*log(Glaisher)) = 0.1013165781635...
G'(0) = 7*zeta'(-2) = -7*zeta(3)/(4*Pi^2) = -0.2131391994...
Equals Integral_{-oo..+oo} -log(1/2 + i*z)/(exp(-Pi*z) + exp(Pi*z)) dz, where i is the imaginary unit. - Peter Luschny, Apr 08 2018
Equals Sum_{n>=0} Sum_{m>=1} (-1)^(m+n) * log(m+n)/(m+n) (Efthimiou, 2010). - Amiram Eldar, Apr 09 2022
Equals A094642/2. - R. J. Mathar, Jun 15 2023

A216582 Decimal expansion of the logarithm of Pi to base 2.

Original entry on oeis.org

1, 6, 5, 1, 4, 9, 6, 1, 2, 9, 4, 7, 2, 3, 1, 8, 7, 9, 8, 0, 4, 3, 2, 7, 9, 2, 9, 5, 1, 0, 8, 0, 0, 7, 3, 3, 5, 0, 1, 8, 4, 7, 6, 9, 2, 6, 7, 6, 3, 0, 4, 1, 5, 2, 9, 4, 0, 6, 7, 8, 8, 5, 1, 5, 4, 8, 8, 1, 0, 2, 9, 6, 3, 5, 8, 4, 5, 4, 1, 4, 3, 8, 9, 6, 0, 2, 6
Offset: 1

Views

Author

Alonso del Arte, Sep 09 2012

Keywords

Examples

			1.651496129472318798...
		

References

  • Jörg Arndt and Christoph Haenel, Pi Unleashed, New York: Springer (2001), p. 239.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Log(Pi(R))/Log(2); // G. C. Greubel, Apr 08 2019
  • Maple
    evalf(log[2](Pi)) ; # R. J. Mathar, Sep 11 2012
  • Mathematica
    RealDigits[Log[2, Pi], 10, 105][[1]]
  • PARI
    log(Pi)/log(2) \\ Michel Marcus, Mar 05 2019
    
  • Sage
    log(pi,2).n(digits=100) # Jani Melik, Oct 05 2012
    

Formula

Log_2(Pi) = log(Pi) / log(2) = A053510 / A002162.
Equals (A061444 / A002162) - 1 = (A094642 / A002162) + 1. - John W. Nicholson, Mar 12 2019

A377588 Decimal expansion of 7*zeta(3)/(2*Pi^2) - log(2) + 1/2.

Original entry on oeis.org

2, 3, 3, 1, 3, 1, 2, 1, 8, 2, 5, 7, 5, 6, 0, 4, 8, 1, 5, 0, 6, 2, 8, 9, 3, 0, 5, 1, 3, 7, 9, 9, 0, 3, 0, 4, 9, 8, 2, 5, 0, 6, 6, 3, 5, 2, 6, 9, 3, 7, 9, 8, 5, 3, 4, 2, 0, 9, 2, 6, 4, 4, 8, 5, 3, 3, 1, 3, 5, 8, 2, 9, 2, 5, 9, 4, 2, 1, 8, 6, 5, 8, 8, 3, 2, 6, 0, 8, 6, 1, 3, 3, 5, 8, 2, 4, 2, 5, 6, 0
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2024

Keywords

Examples

			0.233131218257560481506289305137990304982506635269...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Programs

  • Mathematica
    RealDigits[7Zeta[3]/(2Pi^2)-Log[2]+1/2,10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/((k + 1)*2^(2*k)) (see Finch).

A377589 Decimal expansion of 9*zeta(3)/(2*Pi^2) - log(2) + 1/3.

Original entry on oeis.org

1, 8, 8, 2, 5, 8, 3, 7, 9, 8, 2, 4, 4, 6, 6, 8, 9, 7, 9, 6, 0, 6, 2, 8, 7, 6, 0, 3, 5, 5, 9, 4, 2, 7, 4, 4, 9, 0, 3, 8, 4, 1, 9, 0, 2, 7, 8, 2, 6, 0, 8, 9, 3, 1, 7, 6, 6, 1, 4, 7, 3, 4, 1, 3, 0, 2, 6, 2, 0, 4, 3, 4, 3, 7, 2, 5, 0, 2, 7, 9, 3, 9, 2, 7, 7, 7, 2, 5, 3, 4, 1, 9, 2, 6, 5, 5, 5, 7, 3, 2
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2024

Keywords

Examples

			0.18825837982446689796062876035594274490384190278...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Programs

  • Mathematica
    RealDigits[9Zeta[3]/(2Pi^2)-Log[2]+1/3,10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/((2*k + 3)*2^(2*k-1)) (see Finch).

A377592 Decimal expansion of 9*zeta(3)/Pi^2 - 93*zeta(5)/(2*Pi^4) - log(2) + 1/4.

Original entry on oeis.org

1, 5, 8, 0, 0, 0, 9, 6, 3, 6, 2, 5, 5, 5, 7, 7, 3, 3, 2, 6, 8, 6, 2, 9, 3, 8, 5, 9, 7, 8, 4, 5, 8, 5, 4, 9, 0, 9, 1, 7, 8, 0, 2, 8, 4, 7, 9, 6, 2, 7, 6, 1, 1, 3, 0, 8, 8, 6, 1, 4, 1, 6, 3, 1, 6, 2, 1, 8, 5, 9, 2, 6, 5, 7, 1, 5, 5, 6, 8, 4, 3, 7, 3, 7, 0, 1, 6, 0, 8, 6, 6, 1, 9, 2, 7, 0, 2, 8, 0, 9
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2024

Keywords

Examples

			0.158000963625557733268629385978458549091780284796...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Programs

  • Mathematica
    RealDigits[9Zeta[3]/Pi^2-93Zeta[5]/(2Pi^4)-Log[2]+1/4,10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/((k + 2)*2^(2*k)) (see Finch).

A068449 Factorial expansion of log(Pi/2) = sum n>0 a(n)/n!.

Original entry on oeis.org

0, 0, 2, 2, 4, 1, 0, 7, 7, 3, 3, 6, 4, 10, 9, 1, 15, 2, 8, 10, 14, 6, 4, 7, 3, 3, 2, 2, 7, 26, 3, 30, 3, 31, 9, 29, 23, 12, 29, 3, 0, 12, 1, 11, 4, 13, 22, 17, 24, 33, 40, 34, 48, 27, 15, 5, 33, 33, 51, 48, 42, 46, 47, 38, 35, 30, 27, 1, 51, 52, 28, 25, 13, 30, 51, 14, 39, 12, 9, 58, 33
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A007514, A094642 (decimal expansion).

Programs

  • Magma
    R:= RealField(); [Floor(Log(Pi(R)/2))] cat [Floor(Factorial(n)*Log(Pi(R)/2)) - n*Floor(Factorial((n-1))* Log(Pi(R)/2)) : n in [2..30]]; // G. C. Greubel, Mar 21 2018
  • Mathematica
    Table[If[n == 1, Floor[Log[Pi/2]], Floor[n!*Log[Pi/2]] - n*Floor[(n - 1)!*Log[Pi/2]]], {n, 1, 50}] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    for(n=1,30, print1(if(n==1, floor(log(Pi/2)), floor(n!*log(Pi/2)) - n*floor((n-1)!*log(Pi/2))), ", ")) \\ G. C. Greubel, Mar 21 2018
    

A094643 Continued fraction for log(Pi/2).

Original entry on oeis.org

0, 2, 4, 1, 1, 1, 33, 1, 4, 2, 1, 2, 1, 17, 1, 1, 4, 4, 1, 2, 1, 3, 1, 3, 1, 17, 54, 1, 4, 1, 3, 38, 1, 2, 1, 1, 2, 3, 4, 3, 1, 4, 1, 8, 4, 2, 1, 4, 12, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 16, 3, 2, 4, 1, 5, 1, 12, 1, 2, 14, 1, 1, 1, 2, 3, 2, 16, 3, 4, 4, 1, 1, 10, 198, 2, 6, 2, 1, 2, 3, 1, 2
Offset: 0

Views

Author

Keywords

References

  • G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7.
  • J. Borwein and P. Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11.

Crossrefs

Cf. A094642 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[ Log[Pi/2], 100]

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A255681 Decimal expansion of Sum_{k>=1} zeta(2*k+1)/((2*k+1)*2^(2*k)).

Original entry on oeis.org

1, 1, 5, 9, 3, 1, 5, 1, 5, 6, 5, 8, 4, 1, 2, 4, 4, 8, 8, 1, 0, 7, 2, 0, 0, 3, 1, 3, 7, 5, 7, 7, 4, 1, 3, 7, 0, 3, 3, 3, 4, 0, 7, 9, 8, 4, 2, 0, 3, 3, 1, 6, 5, 5, 3, 1, 4, 9, 1, 2, 7, 7, 4, 6, 0, 8, 5, 2, 5, 8, 9, 5, 1, 9, 2, 0, 3, 0, 0, 4, 4, 6, 6, 8, 9, 1, 6, 2, 6, 3, 7, 0, 4, 6, 7, 1, 9, 3, 8, 0, 2, 7, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.1159315156584124488107200313757741370333407984203316553149...
		

Crossrefs

Cf. A001620, A002162, A094642 (= log(Pi/2) = Sum_{k>=2} zeta(2*k)/(k*2^(2*k))).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Log(2) - EulerGamma(R); // G. C. Greubel, Sep 06 2018
  • Mathematica
    RealDigits[Log[2] - EulerGamma, 10, 105] // First
  • PARI
    default(realprecision, 100); log(2) - Euler \\ G. C. Greubel, Sep 06 2018
    

Formula

Equals log(2) - EulerGamma.
Equals Sum_{k>=1} (zeta(2*k+1)-1)/(k+1). - Amiram Eldar, May 24 2021
Equals Sum_{k>=1} psi(k)/2^k, where psi(x) is the digamma function. - Amiram Eldar, Sep 12 2022
Showing 1-10 of 11 results. Next