cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A155969 Decimal expansion of the square of the Euler-Mascheroni constant.

Original entry on oeis.org

3, 3, 3, 1, 7, 7, 9, 2, 3, 8, 0, 7, 7, 1, 8, 6, 7, 4, 3, 1, 8, 3, 7, 6, 1, 3, 6, 3, 5, 5, 2, 4, 4, 2, 2, 6, 6, 5, 9, 4, 1, 7, 1, 4, 0, 2, 4, 9, 6, 2, 9, 7, 4, 3, 1, 5, 0, 8, 3, 3, 3, 3, 8, 0, 0, 2, 2, 6, 5, 7, 9, 3, 6, 9, 5, 7, 5, 6, 6, 6, 9, 6, 6, 1, 2, 6, 3, 2, 6, 8, 6, 3, 1, 7, 1, 5, 9, 7, 7, 3, 0, 3, 0, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 31 2009

Keywords

Comments

The Pierce expansion is 3, 2144, 2463, 5226, 17239, 51372, 287963, 387316, 3226210,...
From Peter Bala, Aug 24 2025: (Start)
By definition, the Euler-Mascheroni constant gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k)^2. Then it appears that E(n) converges rapidly to gamma^2. For example, E(50) = 0.33317792380771867431837613635524(22...) gives gamma^2 correct to 32 decimal digits. (End)

Examples

			0.3331779238077186743183761363552442...
		

Crossrefs

Programs

  • Maple
    evalf(gamma^2);
  • Mathematica
    RealDigits[N[EulerGamma^2, 100]][[1]] (* G. C. Greubel, Dec 26 2016 *)
  • PARI
    Euler^2 \\ G. C. Greubel, Dec 26 2016

Formula

Equals A001620^2.

A147708 Decimal expansion of cosh(EulerGamma).

Original entry on oeis.org

1, 1, 7, 1, 2, 6, 5, 9, 5, 0, 7, 7, 8, 5, 4, 1, 5, 7, 7, 5, 3, 0, 3, 2, 3, 6, 5, 8, 9, 4, 9, 0, 3, 0, 1, 6, 7, 9, 6, 7, 6, 7, 7, 8, 0, 0, 6, 1, 4, 2, 9, 1, 6, 8, 6, 7, 5, 5, 9, 1, 2, 4, 7, 6, 2, 7, 8, 9, 6, 4, 5, 2, 1, 9, 4, 3, 9, 3, 6, 9, 6, 5, 4, 2, 0, 2, 2, 2, 6, 8, 7, 7, 1, 1, 3, 1, 6, 3, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Nov 11 2008

Keywords

Examples

			1.171265950778541577530323658949030167967677800614291686755912...
		

Crossrefs

Cf. A147709 (with sinh), A147710 (with tanh), A147711 (with coth).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Cosh(EulerGamma(R)); // G. C. Greubel, Aug 29 2018
  • Mathematica
    First[RealDigits[N[(Exp[EulerGamma] + Exp[ -EulerGamma])/2, 100]]]
  • PARI
    default(realprecision, 100); cosh(Euler) \\ G. C. Greubel, Aug 29 2018
    

A147709 Decimal expansion of sinh(EulerGamma).

Original entry on oeis.org

6, 0, 9, 8, 0, 6, 4, 6, 7, 2, 1, 1, 6, 5, 6, 4, 0, 7, 7, 0, 6, 1, 8, 0, 4, 4, 4, 1, 5, 8, 1, 4, 9, 3, 8, 1, 2, 0, 1, 9, 6, 7, 4, 1, 3, 6, 8, 9, 1, 3, 8, 5, 1, 8, 6, 0, 1, 7, 5, 3, 4, 0, 0, 2, 3, 3, 8, 7, 6, 5, 5, 4, 8, 6, 9, 6, 5, 1, 3, 2, 8, 2, 8, 7, 3, 5, 1, 5, 2, 8, 7, 7, 7, 1, 0, 1, 9, 6, 0, 7
Offset: 0

Views

Author

Artur Jasinski, Nov 11 2008

Keywords

Examples

			Equals 0.6098064672116564077061804441581493812019674136891385186017534...
		

Crossrefs

Cf. A147708 (with cosh), A147710 (with tanh), A147711 (with coth).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(EulerGamma(R)) - Exp(-EulerGamma(R)))/2; // G. C. Greubel, Aug 29 2018
  • Mathematica
    First[RealDigits[N[(Exp[EulerGamma] - Exp[ -EulerGamma])/2, 100]]]
    RealDigits[Sinh[EulerGamma],10,120][[1]] (* Harvey P. Dale, Mar 06 2013 *)
  • PARI
    default(realprecision, 100); (exp(Euler) - exp(-Euler))/2 \\ G. C. Greubel, Aug 29 2018
    

Extensions

Leading zero removed, offset adjusted by R. J. Mathar, Feb 05 2009
Corrected by Harvey P. Dale, Mar 06 2013

A147710 Decimal expansion of tanh(EulerGamma).

Original entry on oeis.org

5, 2, 0, 6, 3, 8, 7, 7, 2, 7, 7, 9, 4, 1, 6, 5, 5, 8, 8, 2, 9, 3, 9, 4, 5, 9, 1, 6, 6, 9, 0, 2, 8, 1, 3, 4, 2, 8, 7, 6, 7, 3, 1, 9, 3, 8, 1, 0, 4, 8, 7, 6, 0, 8, 2, 6, 5, 4, 0, 3, 6, 9, 0, 1, 6, 8, 5, 5, 7, 2, 6, 4, 6, 1, 3, 1, 8, 9, 4, 4, 6, 1, 0, 4, 2, 5, 7, 5, 2, 9, 2, 0, 7, 1, 7, 1, 2, 7, 6, 4
Offset: 0

Views

Author

Artur Jasinski, Nov 11 2008

Keywords

Examples

			0.52063877277941655882939459166902813428767319381048760826540...
		

Crossrefs

Cf. A147708 (with cosh), A147709 (with sinh), A147711 (with coth).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tanh(EulerGamma(R)); // G. C. Greubel, Aug 29 2018
  • Mathematica
    First[RealDigits[N[(Exp[EulerGamma] - Exp[ -EulerGamma])/(Exp[EulerGamma] + Exp[ -EulerGamma]), 100]]]
    RealDigits[Tanh[EulerGamma],10,120][[1]] (* Harvey P. Dale, Aug 10 2020 *)
  • PARI
    default(realprecision, 100); tanh(Euler) \\ G. C. Greubel, Aug 29 2018
    

Extensions

Leading zero removed and offset adjusted by R. J. Mathar, Feb 05 2009

A147711 Decimal expansion of coth(EulerGamma).

Original entry on oeis.org

1, 9, 2, 0, 7, 1, 7, 4, 9, 6, 0, 5, 1, 1, 0, 2, 7, 3, 7, 9, 7, 3, 6, 4, 8, 6, 6, 3, 4, 8, 3, 2, 1, 1, 2, 5, 5, 4, 7, 9, 1, 0, 6, 1, 9, 4, 0, 2, 4, 9, 7, 6, 1, 5, 5, 4, 4, 1, 2, 6, 4, 9, 1, 8, 9, 0, 1, 9, 9, 7, 8, 5, 5, 8, 7, 1, 2, 2, 5, 2, 1, 0, 5, 2, 1, 7, 0, 8, 1, 1, 9, 0, 9, 9, 6, 2, 1, 1, 5, 7
Offset: 1

Views

Author

Artur Jasinski, Nov 11 2008

Keywords

Examples

			1.920717496051102737973648663483211255479106194024976155441...
		

Crossrefs

Cf. A147708 (with cosh), A147709 (with sinh), A147710 (with tanh).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(EulerGamma(R)) + Exp(-EulerGamma(R)))/(Exp(EulerGamma(R)) - Exp(-EulerGamma(R))); // G. C. Greubel, Aug 29 2018
  • Mathematica
    First[RealDigits[N[(Exp[EulerGamma] + Exp[ -EulerGamma])/(Exp[EulerGamma] - Exp[ -EulerGamma]), 100]]]
  • PARI
    default(realprecision, 100); (exp(Euler) + exp(-Euler))/(exp(Euler) - exp(-Euler)) \\ G. C. Greubel, Aug 29 2018
    
  • PARI
    1/tanh(Euler) \\ Charles R Greathouse IV, May 14 2019
    

A059558 Beatty sequence for 1 + 1/gamma^2.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Comments

The first term where this sequence breaks the progression a(n) = a(n-1) + 4 is a(715) = 2861. - Max Alekseyev, Mar 03 2007

Crossrefs

Beatty complement is A059557.

Programs

  • Mathematica
    Floor[Range[100]*(1 + 1/EulerGamma^2)] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 + 1/Euler^2; for (n = 1, 2000, write("b059558.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1+1/gamma^2)) where 1+1/gamma^2= 1+A098907^2 = 4.00139933... - R. J. Mathar, Sep 29 2023

Extensions

Removed incorrect comment, Joerg Arndt, Nov 14 2014

A059191 Engel expansion of 1/gamma, (gamma is the Euler-Mascheroni constant A001620) = 1.73245.

Original entry on oeis.org

1, 2, 3, 3, 6, 10, 20, 46, 226, 1836, 3719, 14308, 17262, 129530, 945152, 1535786, 2229882, 3560447, 9434930, 20957352, 102311436, 312567415, 449243761, 4362956254, 12000988888, 22909186976, 29969826721
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A098907.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[EulerGamma^2, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A172527 a(n) = the smallest prime > (1/EulerGamma)^n.

Original entry on oeis.org

2, 5, 7, 11, 17, 29, 47, 83, 149, 251, 431, 733, 1277, 2203, 3803, 6599, 11411, 19777, 34253, 59333, 102793, 178067, 308489, 534431, 925891, 1604021, 2778901, 4814321, 8340593, 14449651, 25033357, 43369111, 75135077, 130168021, 225510203
Offset: 1

Views

Author

Michel Lagneau, Nov 21 2010

Keywords

Comments

EulerGamma is Euler's constant (or the Euler-Mascheroni constant) gamma (A001620).
1/EulerGamma = 1.7324547146006... (A098907).

Examples

			The first prime > (1/EulerGamma)^6 = 27.03779975... is 29, so a(6) = 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[PrimePi[1/EulerGamma^n] + 1], {n, 1, 40}]
    NextPrime/@Table[1/EulerGamma^n,{n,40}] (* Harvey P. Dale, May 10 2020 *)

A173647 Primes found in decimal expansion of 1/EulerGamma.

Original entry on oeis.org

17, 173, 173245471460063, 1732454714600633
Offset: 1

Views

Author

Michel Lagneau, Nov 24 2010

Keywords

Comments

Primes found in A098907.

Examples

			1/EulerGamma =1.732454714600633473583...  so a(1)=17 ; a(2) =173,...
		

Crossrefs

Programs

  • Maple
    Digits := 100; n0 := evalf(1/gamma); for i from 1 to 500 do x := trunc(10^i*n0):
      if isprime(x) then printf(`%d, `, x): fi: od:

A342934 Decimal expansion of gamma^(1/gamma), where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

3, 8, 5, 9, 4, 8, 2, 5, 4, 7, 1, 9, 8, 4, 1, 0, 5, 8, 0, 3, 7, 3, 6, 5, 0, 0, 8, 1, 1, 7, 5, 3, 7, 2, 0, 8, 4, 5, 3, 5, 7, 1, 5, 6, 2, 5, 0, 1, 4, 0, 5, 9, 6, 5, 4, 6, 7, 6, 9, 4, 0, 5, 4, 1, 8, 1, 9, 6, 6, 5, 7, 5, 1, 5, 6, 3, 4, 3, 2, 0, 8, 8, 5, 2, 9, 2, 3, 5, 9, 9
Offset: 0

Views

Author

Christoph B. Kassir, Aug 30 2021

Keywords

Examples

			0.385948254719841058037365008117537208453571562501405965467694054181966575...
		

Crossrefs

Programs

  • Maple
    Digits := 100; evalf(gamma^(1/gamma));
  • Mathematica
    RealDigits[EulerGamme^(1/EulerGamma), 10, 100][[1]]
  • PARI
    Euler^(1/Euler)
Showing 1-10 of 10 results.