A077613
Number of adjacent pairs of form (even,odd) among all permutations of {1,2,...,n}. Also, number of adjacent pairs of form (odd,even).
Original entry on oeis.org
0, 1, 4, 24, 144, 1080, 8640, 80640, 806400, 9072000, 108864000, 1437004800, 20118067200, 305124019200, 4881984307200, 83691159552000, 1506440871936000, 28810681675776000, 576213633515520000, 12164510040883200000, 267619220899430400000, 6182004002776842240000
Offset: 1
A052618
Expansion of e.g.f. 1/((1-x)^2*(1-x^2)).
Original entry on oeis.org
1, 2, 8, 36, 216, 1440, 11520, 100800, 1008000, 10886400, 130636800, 1676505600, 23471078400, 348713164800, 5579410636800, 94152554496000, 1694745980928000, 32011868528640000, 640237370572800000, 13380961044971520000, 294381142989373440000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
The a(2) = 8 permutations of [4] starting with an even number and ending with an odd number are: 2143, 2341, 2413, 2431, 4123, 4213, 4231, 4321.
-
spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
a := proc (n) options operator, arrow: factorial(n)*floor((1/2)*n+1)*ceil((1/2)*n+1) end proc; seq(a(n), n = 0 .. 20); # Emeric Deutsch, Dec 14 2008
-
With[{nn=20},CoefficientList[Series[1/((1-x)^2*(1-x^2)),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 01 2019 *)
A077611
Number of adjacent pairs of form (odd,odd) among all permutations of {1,2,...,n}.
Original entry on oeis.org
0, 0, 4, 12, 144, 720, 8640, 60480, 806400, 7257600, 108864000, 1197504000, 20118067200, 261534873600, 4881984307200, 73229764608000, 1506440871936000, 25609494822912000, 576213633515520000, 10948059036794880000, 267619220899430400000, 5620003638888038400000
Offset: 1
For n=4, the a(4) = 12 permutations of degree 5 starting and ending with an even number are 21354, 21534, 23154, 23514, 25134, 25314, 41352, 41532, 43152, 43512, 45132, 45312.
-
[Factorial(n-1)*(2*n*(n-1)-(2*n-1)*(-1)^n-1)/8 : n in [1..30]]; // Vincenzo Librandi, Nov 16 2011
-
Table[Ceiling[n/2] Ceiling[n/2 - 1] (n - 1)!, {n, 22}] (* Michael De Vlieger, Aug 20 2017 *)
A052591
Expansion of e.g.f. x/((1-x)(1-x^2)).
Original entry on oeis.org
0, 1, 2, 12, 48, 360, 2160, 20160, 161280, 1814400, 18144000, 239500800, 2874009600, 43589145600, 610248038400, 10461394944000, 167382319104000, 3201186852864000, 57621363351552000, 1216451004088320000, 24329020081766400000, 562000363888803840000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Prod(Z,Sequence(Z),Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
G(x):=x/(1-x)/(1-x^2): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
-
a(n)=if(n<0,0,n!*polcoeff(x/(1-x)/(1-x^2)+x*O(x^n),n))
A152887
Number of descents beginning with an even number and ending with an odd number in all permutations of {1,2,...,n}.
Original entry on oeis.org
0, 1, 2, 18, 72, 720, 4320, 50400, 403200, 5443200, 54432000, 838252800, 10059033600, 174356582400, 2440992153600, 47076277248000, 753220435968000, 16005934264320000, 288106816757760000, 6690480522485760000, 133809610449715200000, 3372002183332823040000
Offset: 1
a(8) = 50400 because (i) the descent pairs can be chosen in 1+2+3+4 = 10 ways, namely (2,1), (4,1), (4,3), (6,1), (6,3), (6,5), (8,1), (8,3), (8,5), (8,7); (ii) they can be placed in 7 positions, namely (1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,8); (iii) the remaining 6 entries can be permuted in 6! = 720 ways; 10*7*720 = 50400.
- Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002, page 170.
-
[Factorial(n-1)*(2*n*(n+1)+(2*n+1)*(-1)^n-1)/16: n in [1..20]]; // Bruno Berselli, Nov 07 2011
-
a := proc (n) if `mod`(n, 2) = 0 then factorial(n-1)*binomial((1/2)*n+1, 2) else factorial(n-1)*binomial((1/2)*n+1/2, 2) end if end proc: seq(a(n), n = 1 .. 22);
-
CoefficientList[Series[x/((1 - x) (1 - x^2)^2), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Geoffrey Critzer, Mar 03 2010 *)
A077612
Number of adjacent pairs of form (even,even) among all permutations of {1,2,...,n}.
Original entry on oeis.org
0, 0, 0, 12, 48, 720, 4320, 60480, 483840, 7257600, 72576000, 1197504000, 14370048000, 261534873600, 3661488230400, 73229764608000, 1171676233728000, 25609494822912000, 460970906812416000, 10948059036794880000, 218961180735897600000, 5620003638888038400000
Offset: 1
-
a[n_] := Floor[n/2]*Floor[n/2 - 1]*(n - 1)!; Array[a, 25] (* Amiram Eldar, Jan 22 2023 *)
-
a(n) = n\2 * (n\2-1)*(n-1)! ; \\ Michel Marcus, Aug 29 2013
A091032
Second column (k=3) of array A090438 ((4,2)-Stirling2) divided by 8.
Original entry on oeis.org
1, 60, 5040, 604800, 99792000, 21794572800, 6102480384000, 2134124568576000, 912338253066240000, 468333636574003200000, 284372184127734743040000, 201645730563302817792000000, 165147853331345007771648000000
Offset: 2
-
a[n_] := (n - 1)*(2*n)!/4!; Array[a, 13, 2] (* Amiram Eldar, Nov 03 2022 *)
-
a(n) = (n-1)*(2*n)!/4!; \\ Amiram Eldar, Nov 03 2022
A091033
Third column (k=4) of array A090438 ((4,2)-Stirling2).
Original entry on oeis.org
1, 180, 25200, 4233600, 898128000, 239740300800, 79332244992000, 32011868528640000, 15509750302126080000, 8898339094906060800000, 5971815866682429603840000, 4637851802955964809216000000
Offset: 2
-
a[n_] := (n-1)*(2*n-3)*(2*n)!/4!; Array[a, 12, 2] (* Amiram Eldar, Nov 03 2022 *)
-
a(n) = (n-1)*(2*n-3)*(2*n)!/4!; \\ Amiram Eldar, Nov 03 2022
A091034
Fourth column (k=5) of array A090438 ((4,2)-Stirling2) divided by 24.
Original entry on oeis.org
1, 280, 70560, 19958400, 6659452800, 2644408166400, 1244905998336000, 689322235650048000, 444916954745303040000, 331767548149023866880000, 283424276847308960563200000, 275246422218908346286080000000
Offset: 3
-
a[n_] := (n - 1)*(n - 2)*(2*n - 3)*(2*n)!/(5!*(3!)^2); Array[a, 12, 3] (* Amiram Eldar, Nov 03 2022 *)
-
a(n) = (n-1)*(n-2)*(2*n-3)*(2*n)!/(5!*(3!)^2); \\ Amiram Eldar, Nov 03 2022
A091035
Fifth column (k=6) of array A090438 ((4,2)-Stirling2).
Original entry on oeis.org
1, 840, 352800, 139708800, 59935075200, 29088489830400, 16183777978368000, 10339833534750720000, 7563588230670151680000, 6303583414831453470720000, 5951909813793488171827200000, 6330667711034891964579840000000
Offset: 3
-
Table[Binomial[2n-2,4] (2n)!/6!,{n,3,20}] (* Harvey P. Dale, Jun 07 2021 *)
-
a(n) = binomial(2*n-2, 4)*(2*n)!/6!; \\ Amiram Eldar, Nov 03 2022
Showing 1-10 of 14 results.
Comments