cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A082687 Numerator of Sum_{k=1..n} 1/(n+k).

Original entry on oeis.org

1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

Numerator of Sum_{k=0..n-1} 1/((k+1)(2k+1)) (denominator is A111876). - Paul Barry, Aug 19 2005
Numerator of the sum of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006
Numerator of the 2n-th alternating harmonic number H'(2n) = Sum ((-1)^(k+1)/k, k=1..2n). H'(2n) = H(2n) - H(n), where H(n) = Sum_{k=1..n} 1/k is the n-th Harmonic Number. - Alexander Adamchuk, Apr 11 2006
a(n) almost always equals A117731(n) = numerator(n*Sum_{k=1..n} 1/(n+k)) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)) but differs for n = 14, 53, 98, 105, 111, 114, 119, 164. - Alexander Adamchuk, Jul 16 2006
Sum_{k=1..n} 1/(n+k) = n!^2 *Sum_{j=1..n} (-1)^(j+1) /((n+j)!(n-j)!j). - Leroy Quet, May 20 2007
Seems to be the denominator of the harmonic mean of the first n hexagonal numbers. - Colin Barker, Nov 19 2014
Numerator of 2*n*binomial(2*n,n)*Sum_{k = 0..n-1} (-1)^k* binomial(n-1,k)/(n+k+1)^2. Cf. A049281. - Peter Bala, Feb 21 2017
From Peter Bala, Feb 16 2022: (Start)
2*Sum_{k = 1..n} 1/(n+k) = 1 + 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) + 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) + - .... Cf. A101028.
2*Sum_{k = 1..n} 1/(n+k) = n - (1 + 1/2^2)*n*(n-1)/(n+1) + (1/2^2 + 1/3^2)*n*(n-1)*(n-2)/((n+1)*(n+2)) - (1/3^2 + 1/4^2)*n*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + (1/4^2 + 1/5^2)*n*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - + .... Cf. A007406 and A120778.
These identities allow us to extend the definition of Sum_{k = 1..n} 1/(n+k) to non-integral values of n. (End)

Examples

			H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
   1  1/2
  1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
   1   1/2  1/3  1/4  1/5  1/6  1/7  1/8  ...
  1/2  1/3  1/4  1/5  1/6  1/7  1/8  1/9  ...
  1/3  1/4  1/5  1/6  1/7  1/8  1/9  1/10 ...
  1/4  1/5  1/6  1/7  1/8  1/9  1/10 1/11 ...
  1/5  1/6  1/7  1/8  1/9  1/10 1/11 1/12 ...
  1/6  1/7  1/8  1/9  1/10 1/11 1/12 1/13 ...
		

Crossrefs

Bisection of A058313, A082688 (denominators).

Programs

  • Magma
    [Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
    
  • Maple
    a := n -> numer(harmonic(2*n) - harmonic(n)):
    seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
    Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
    
  • SageMath
    [numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023

Formula

Limit_{n -> oo} Sum_{k=1..n} 1/(n+k) = log(2).
Numerator of Psi(2*n+1) - Psi(n+1). - Vladeta Jovovic, Aug 24 2003
a(n) = numerator((Sum_{k=1..2*n} 1/k) - Sum_{k=1..n} 1/k). - Alexander Adamchuk, Apr 11 2006
a(n) = numerator(Sum_{j=1..n} (Sum_{i=1..n} 1/(i+j-1))). - Alexander Adamchuk, Apr 11 2006
The o.g.f for Sum_{k=1..n} 1/(n+k) is f(x) = (sqrt(x)*log((1+sqrt(x))/(1-sqrt(x))) + log(1-x))/(2*x*(1-x)).

A120778 Numerators of partial sums of Catalan numbers scaled by powers of 1/4.

Original entry on oeis.org

1, 5, 11, 93, 193, 793, 1619, 26333, 53381, 215955, 436109, 3518265, 7088533, 28539857, 57414019, 1846943453, 3711565741, 14911085359, 29941580393, 240416274739, 482473579583, 1936010885087, 3883457090629, 62306843256889
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

For denominators see A120777.
From the expansion of 0 = sqrt(1-1) = 1 - (1/2)*Sum_{k>=0} C(k)/4^k one has r:=lim_{n->infinity} r(n) = 2, with the partial sums r(n) defined below.
The series a(n)/A046161(n+1) is absolutely convergent to 1. - Ralf Steiner, Feb 16 2017
If n >= 1 it appears a(n-1) is equal to the difference between the denominator and the numerator of the ratio (2n)!!/(2n-1)!!. In particular a(n-1) is the difference between the denominator and the numerator of the ratio A001147(2n-1)/A000165(2n). See examples. - Anthony Hernandez, Feb 05 2020
From Peter Bala, Feb 16 2022: (Start)
Sum_{k = 0..n-1} Catalan(k)/4^k = (1/4^n)*(2*n)*binomial(2*n,n) *( 1 - 1/(1*2)*(n-1)/(n+1) - 1/(2*3)*(n-1)*(n-2)/((n+1)*(n+2)) - 1/(3*4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/((n+1)*(n+2)*(n+3)*(n+4)) - ... ). Cf. A082687 and A101028.
This identity allows us to extend the definition of Sum_{k = 0..n} Catalan(k)/4^k to non-integral values of n. (End)

Examples

			Rationals r(n): [1, 5/4, 11/8, 93/64, 193/128, 793/512, 1619/1024, 26333/16384, ...].
From _Anthony Hernandez_, Feb 05 2020: (Start)
For n = 4. The 4th even number is 8, and 8!!/(8-1)!! = 128/35, so a(4-1) = a(3) = 128 - 35 = 93.
For n = 7. The 7th even number is 14, and 14!!/(14-1)!! = 2048/429, so a(7-1) = a(6) = 2048 - 429 = 1619. (End)
		

Crossrefs

Factors of A160481. Cf. A120777 (denominators), A082687, A101028, A141244.

Programs

  • Magma
    [Numerator(2*(1-Binomial(2*n+2,n+1)/4^(n+1))): n in [0..25]]; // Vincenzo Librandi, Feb 17 2017
  • Maple
    a := n -> 2^(2*(n+1) - add(i, i=convert(n+1, base, 2)))* (1-((n+1/2)!)/(sqrt(Pi)*(n+1)!)): seq(simplify(a(n)), n=0..23); # Peter Luschny, Dec 21 2017
  • Mathematica
    f[n_] := f[n] = Numerator[(4/Pi) (n + 1) Integrate[x^n*ArcSin[Sqrt[x]], {x, 0, 1}]]; Array[f, 23, 0] (* Robert G. Wilson v, Jan 03 2011 *)
    a[n_] := 2^(2(n+1) - DigitCount[n+1,2,1])(1 - ((n+1/2)!)/(Sqrt[Pi](n+1)!));
    Table[a[n], {n, 0, 23}] (* Peter Luschny, Dec 21 2017 *)

Formula

a(n) = numerator(r(n)), with the rationals r(n):=Sum_{k = 0..n} C(k)/4^k with C(k) := A000108(k) (Catalan numbers). Rationals r(n) are taken in lowest terms.
r(n) = (4/Pi)*(n+1)*Integral_{x = 0..1} x^n*arcsin(sqrt(x)) dx. - Groux Roland, Jan 03 2011
r(n) = 2*(1 - binomial(2*n+2,n+1)/4^(n+1)). - Groux Roland, Jan 04 2011
a(n) = A141244(2n+2) = A141244(2n+3) (conjectural). - Greg Martin, Aug 16 2014, corrected by M. F. Hasler, Aug 18 2014
From Peter Luschny, Dec 21 2017: (Start)
a(n) = numerator(1 - ((n+1/2)!)/(sqrt(Pi)*(n+1)!)).
a(n) = 2^(2*(n+1) - HammingWeight(n+1))*(1 - ((n+1/2)!)/(sqrt(Pi)*(n+1)!)). (End)

A101627 Numerator of partial sums of a certain series.

Original entry on oeis.org

1, 39, 241, 34883, 14039, 1516871, 7601151, 875425657, 7887002813, 7095769757767, 14199583385459, 75087685321529, 75113436870869, 927229349730873529, 927436191807263569, 305182576081725442901, 23479178371879154033, 37713848011377144613, 37717984058802320713, 135759786815564675620247
Offset: 1

Views

Author

Wolfdieter Lang, Dec 23 2004

Keywords

Comments

The denominators are given in A101628.
Second member (m=3) of a family defined in A101028.
The limit s=lim(s(n),n->infinity) with the s(n) defined below equals 8*sum(zeta(2*k+1)/3^(2*k),k=1..infinity) with Euler's (or Riemann's) zeta function. This limit is 12*(log(3)-1) = 1.18334746...; see the Abramowitz-Stegun (given in A101028) reference p. 259, eq. 6.3.15 with z=1/3 together with p. 258.

Examples

			s(3)= 24*(1/(2*3*4)+ 1/(5*6*7) + 1/(8*9*10)) = 241/210, hence a(3)=241 and A101628(3)=210.
		

Crossrefs

Cf. A101028 (m=2), A101629 (m=4), A101631 (m=5).
Cf. A101628 (denominators).

Programs

  • Mathematica
    Numerator[Accumulate[Table[8/(9k^3-k),{k,20}]]]
  • PARI
    a(n) = numerator(24*sum(k=1, n, 1/((3*k-1)*(3*k)*(3*k+1))));

Formula

a(n)=numerator(s(n)) with s(n)=24*sum(1/((3*k-1)*(3*k)*(3*k+1)), k=1..n).

Extensions

More terms from Michel Marcus, Mar 01 2022

A101629 Numerator of partial sums of a certain series.

Original entry on oeis.org

1, 47, 6931, 238657, 4563655, 526760263, 45934377581, 2852342564497, 105651280880749, 4335127472172929, 186521117762900387, 61393482232562091673, 3255023127143379846869, 3255958701070954680689
Offset: 1

Views

Author

Wolfdieter Lang, Dec 23 2004

Keywords

Comments

The denominators are given in A101630.
Third member (m=4) of a family defined in A101028.
The limit s=lim(s(n),n->infinity) with the s(n) defined below equals 15*sum(Zeta(2*k+1)/4^(2*k),k=1..infinity) with Euler's (or Riemann's) zeta function. This limit is 15*(3*log(2)-2) = 1.1916231251...; see the Abramowitz-Stegun reference (given in A101028) p. 259, eq. 6.3.15 with z=1/4 together with p. 258.

Examples

			s(3)= 60*(1/(3*4*5)+ 1/(7*8*9) + 1/(11*12*13)) = 6931/6006, hence
a(3)=6931 and A101630(3)=6006.
		

Crossrefs

Cf. A101028, A101627, A101631, members 2, 3, 5, resp.

Formula

a(n)=numerator(s(n)) with s(n)=60*sum(1/((4*k-1)*(4*k)*(4*k+1)), k=1..n) = 15*sum(1/((4*k-1)*k*(4*k+1)), k=1..n).

A101631 Numerator of partial sums of a certain series.

Original entry on oeis.org

1, 37, 1069, 20575, 1346153, 1214756107, 20699705479, 850029466379, 19572345658457, 137116980686111, 411600123273343, 1482039573988769177, 456179332236626381, 32398234503565880731, 1199020509231104363863
Offset: 1

Views

Author

Wolfdieter Lang, Dec 23 2004

Keywords

Comments

The denominators are given in A101632.
Third member (m=5) of a family defined in A101028.
The limit s = lim_{n->oo} s(n) with the s(n) defined below equals 24*Sum_{k>=1} zeta(2*k+1)/5^(2*k) with Euler's (or Riemann's) zeta function. This limit is -24*(gamma + Psi(1/5) + 5/2 + Pi*cot(Pi/5)/2) = 1.1954056019...; see a comment in A101028 following from the Abramowitz-Stegun reference (given in A101028) p. 259, eq. 6.3.15 with z=1/5 together with p. 258.

Examples

			s(3) = 120*(1/(4*5*6) + 1/(9*10*11) + 1/(14*15*16)) = 1069/924, hence a(3)=1069 and A101632(3)=924.
		

Crossrefs

Cf. A101028, A101627, A101629, members 2, 3, 4, resp.

Formula

a(n) = numerator(s(n)) where s(n) = 120*Sum_{k=1..n} 1/((5*k-1)*(5*k)*(5*k+1)) = 24*Sum_{k=1..n} 1/((5*k-1)*k*(5*k+1)).

A101029 Denominator of partial sums of a certain series.

Original entry on oeis.org

1, 10, 70, 420, 4620, 60060, 60060, 408408, 7759752, 38798760, 892371480, 4461857400, 13385572200, 55454513400, 1719089915400, 3438179830800, 24067258815600, 890488576177200, 890488576177200, 36510031623265200, 1569931359800403600, 1569931359800403600, 73786773910618969200
Offset: 1

Views

Author

Wolfdieter Lang, Dec 17 2004

Keywords

Comments

The numerators are given in A101028.
One third of the denominator of the finite differences of the series of sums of all matrix elements of n X n Hilbert matrix M(i,j)=1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 11 2006

Examples

			n=2: HilbertMatrix[n,n]
   1  1/2
  1/2 1/3
so a(1) = (1/3)*denominator((1 + 1/2 + 1/2 + 1/3) - 1) = (1/3)*denominator(4/3) = 1.
The n X n Hilbert matrix begins:
   1  1/2 1/3 1/4 1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5 1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6 1/7  1/8  1/9  1/10 ...
  1/4 1/5 1/6 1/7 1/8  1/9  1/10 1/11 ...
  1/5 1/6 1/7 1/8 1/9  1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Cf. A101028 (numerators).

Programs

  • Mathematica
    Denominator[Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n,2, 27}]-Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n, 26}]]/3 (* Alexander Adamchuk, Apr 11 2006 *)
  • PARI
    a(n) = denominator(3*sum(k=1, n, 1/((2*k-1)*k*(2*k+1)))); \\ Michel Marcus, Feb 28 2022

Formula

a(n) = denominator(s(n)) with s(n) = 3*Sum_{k=1..n} 1/((2*k-1)*k*(2*k+1)). See A101028 for more information.
a(n) = (1/3)*denominator((Sum_{i=1..n+1} Sum_{j=1..n+1} 1/(i+j-1)) - (Sum_{i=1..n} Sum_{j=1..n} 1/(i+j-1))). a(n) = (1/3)*denominator(H(2*n+1) + H(2*n) - 2*H(n)), where H(n) = Sum_{k=1..n} 1/k is a harmonic number, H(n) = A001008/A002805. - Alexander Adamchuk, Apr 11 2006

Extensions

More terms from Michel Marcus, Feb 28 2022
Showing 1-6 of 6 results.