A082687
Numerator of Sum_{k=1..n} 1/(n+k).
Original entry on oeis.org
1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 7751493599, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193
Offset: 1
H'(2n) = H(2n) - H(n) = {1/2, 7/12, 37/60, 533/840, 1627/2520, 18107/27720, 237371/360360, 95549/144144, 1632341/2450448, 155685007/232792560, ...}, where H(n) = A001008/A002805.
n=2: HilbertMatrix(n,n)
1 1/2
1/2 1/3
so a(2) = Numerator(1 + 1/2 + 1/2 + 1/3) = Numerator(7/3) = 7.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
[Numerator((HarmonicNumber(2*n) -HarmonicNumber(n))): n in [1..40]]; // G. C. Greubel, Jul 24 2023
-
a := n -> numer(harmonic(2*n) - harmonic(n)):
seq(a(n), n=1..20); # Peter Luschny, Nov 02 2017
-
Numerator[Sum[1/k,{k,1,2*n}] - Sum[1/k,{k,1,n}]] (* Alexander Adamchuk, Apr 11 2006 *)
Table[Numerator[Sum[1/(i + j - 1), {i, n}, {j, n}]], {n, 20}] (* Alexander Adamchuk, Apr 11 2006 *)
Table[HarmonicNumber[2 n] - HarmonicNumber[n], {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)
-
a(n) = numerator(sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017
-
[numerator(harmonic_number(2*n,1) - harmonic_number(n,1)) for n in range(1,41)] # G. C. Greubel, Jul 24 2023
A120778
Numerators of partial sums of Catalan numbers scaled by powers of 1/4.
Original entry on oeis.org
1, 5, 11, 93, 193, 793, 1619, 26333, 53381, 215955, 436109, 3518265, 7088533, 28539857, 57414019, 1846943453, 3711565741, 14911085359, 29941580393, 240416274739, 482473579583, 1936010885087, 3883457090629, 62306843256889
Offset: 0
Rationals r(n): [1, 5/4, 11/8, 93/64, 193/128, 793/512, 1619/1024, 26333/16384, ...].
From _Anthony Hernandez_, Feb 05 2020: (Start)
For n = 4. The 4th even number is 8, and 8!!/(8-1)!! = 128/35, so a(4-1) = a(3) = 128 - 35 = 93.
For n = 7. The 7th even number is 14, and 14!!/(14-1)!! = 2048/429, so a(7-1) = a(6) = 2048 - 429 = 1619. (End)
-
[Numerator(2*(1-Binomial(2*n+2,n+1)/4^(n+1))): n in [0..25]]; // Vincenzo Librandi, Feb 17 2017
-
a := n -> 2^(2*(n+1) - add(i, i=convert(n+1, base, 2)))* (1-((n+1/2)!)/(sqrt(Pi)*(n+1)!)): seq(simplify(a(n)), n=0..23); # Peter Luschny, Dec 21 2017
-
f[n_] := f[n] = Numerator[(4/Pi) (n + 1) Integrate[x^n*ArcSin[Sqrt[x]], {x, 0, 1}]]; Array[f, 23, 0] (* Robert G. Wilson v, Jan 03 2011 *)
a[n_] := 2^(2(n+1) - DigitCount[n+1,2,1])(1 - ((n+1/2)!)/(Sqrt[Pi](n+1)!));
Table[a[n], {n, 0, 23}] (* Peter Luschny, Dec 21 2017 *)
A101627
Numerator of partial sums of a certain series.
Original entry on oeis.org
1, 39, 241, 34883, 14039, 1516871, 7601151, 875425657, 7887002813, 7095769757767, 14199583385459, 75087685321529, 75113436870869, 927229349730873529, 927436191807263569, 305182576081725442901, 23479178371879154033, 37713848011377144613, 37717984058802320713, 135759786815564675620247
Offset: 1
s(3)= 24*(1/(2*3*4)+ 1/(5*6*7) + 1/(8*9*10)) = 241/210, hence a(3)=241 and A101628(3)=210.
-
Numerator[Accumulate[Table[8/(9k^3-k),{k,20}]]]
-
a(n) = numerator(24*sum(k=1, n, 1/((3*k-1)*(3*k)*(3*k+1))));
A101629
Numerator of partial sums of a certain series.
Original entry on oeis.org
1, 47, 6931, 238657, 4563655, 526760263, 45934377581, 2852342564497, 105651280880749, 4335127472172929, 186521117762900387, 61393482232562091673, 3255023127143379846869, 3255958701070954680689
Offset: 1
s(3)= 60*(1/(3*4*5)+ 1/(7*8*9) + 1/(11*12*13)) = 6931/6006, hence
a(3)=6931 and A101630(3)=6006.
A101631
Numerator of partial sums of a certain series.
Original entry on oeis.org
1, 37, 1069, 20575, 1346153, 1214756107, 20699705479, 850029466379, 19572345658457, 137116980686111, 411600123273343, 1482039573988769177, 456179332236626381, 32398234503565880731, 1199020509231104363863
Offset: 1
s(3) = 120*(1/(4*5*6) + 1/(9*10*11) + 1/(14*15*16)) = 1069/924, hence a(3)=1069 and A101632(3)=924.
A101029
Denominator of partial sums of a certain series.
Original entry on oeis.org
1, 10, 70, 420, 4620, 60060, 60060, 408408, 7759752, 38798760, 892371480, 4461857400, 13385572200, 55454513400, 1719089915400, 3438179830800, 24067258815600, 890488576177200, 890488576177200, 36510031623265200, 1569931359800403600, 1569931359800403600, 73786773910618969200
Offset: 1
n=2: HilbertMatrix[n,n]
1 1/2
1/2 1/3
so a(1) = (1/3)*denominator((1 + 1/2 + 1/2 + 1/3) - 1) = (1/3)*denominator(4/3) = 1.
The n X n Hilbert matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
-
Denominator[Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n,2, 27}]-Table[Sum[1/(i + j - 1), {i, n}, {j, n}], {n, 26}]]/3 (* Alexander Adamchuk, Apr 11 2006 *)
-
a(n) = denominator(3*sum(k=1, n, 1/((2*k-1)*k*(2*k+1)))); \\ Michel Marcus, Feb 28 2022
Showing 1-6 of 6 results.
Comments