A306360 Numbers k such that A101337(k)/k is an integer.
1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 459, 1634, 8208, 9474, 13598, 48495, 54748, 92727, 93084, 119564, 174961, 306979, 548834, 1741725, 3194922, 4210818, 9800817, 9926315, 12720569, 24678050, 24678051, 88593477, 144688641, 146511208
Offset: 1
Examples
For k = 1, (1^1)/1 = 1; for k = 459, (4^3 + 5^3 + 9^3) / 459 = 2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..109 (full sequence; first 56 terms from Chai Wah Wu)
- Barry Fagin, Idempotent Factorizations of Square-free Integers, Preprints (2019).
Programs
-
Mathematica
Select[Range[10^6], IntegerQ[Total[IntegerDigits[#]^IntegerLength[#]]/#] &] (* Michael De Vlieger, Aug 01 2019 *)
-
PARI
isok(n) = frac(A101337(n)/n) == 0; \\ Michel Marcus, Feb 11 2019
-
PARI
select( is(n)=!(A101337(n)%n), [0..999]) \\ M. F. Hasler, Nov 17 2019
-
Python
A306360_list, k = [], 1 while k < 10**9: s = str(k) l, c = len(s), 0 for i in range(l): c = (c + int(s[i])**l) % k if c == 0: A306360_list.append(k) k += 1 # Chai Wah Wu, Feb 26 2019
Extensions
a(22)-a(37) from Daniel Suteu, Feb 10 2019
Comments