cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A043291 Every run length in base 2 is 2.

Original entry on oeis.org

3, 12, 51, 204, 819, 3276, 13107, 52428, 209715, 838860, 3355443, 13421772, 53687091, 214748364, 858993459, 3435973836, 13743895347, 54975581388, 219902325555, 879609302220, 3518437208883, 14073748835532, 56294995342131, 225179981368524, 900719925474099
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number whose binary representation is A153435(n). - Omar E. Pol, Jan 18 2009
See A033001 and following for the analog in other bases and the variant with runs of length >= 2. - M. F. Hasler, Feb 01 2014

Crossrefs

Cf. A153435 (binary).
Bisections: A108020, A182512. Bisection of A077854.

Programs

  • Magma
    [Floor(4^(n+1)/5): n in [1..30]]; // Vincenzo Librandi, Jun 26 2011
    
  • Maple
    seq(floor(4^(n+1)/5),n=1..25); # Mircea Merca, Dec 26 2010
  • Mathematica
    f[n_] := Floor[4^(n + 1)/5]; Array[f, 23] (* or *)
    a[1] = 3; a[2] = 12; a[3] = 51; a[n_] := a[n] = 4 a[n - 1] + a[n - 2] - 4 a[n - 3]; Array[a, 23] (* or *)
    3 LinearRecurrence[{4, 1, -4}, {1, 4, 17}, 23] (* Robert G. Wilson v, Jul 01 2014 *)
  • PARI
    A043291 = n->4^(n+1)\5 \\ M. F. Hasler, Feb 01 2014
    
  • Python
    def a(n): return int(''.join([['11', '00'][i%2] for i in range(n)]), 2)
    print([a(n) for n in range(1, 26)]) # Michael S. Branicky, Mar 12 2021

Formula

a(n) = 4*a(n-1)+a(n-2)-4*a(n-3), n>3. - John W. Layman, Feb 01 2000
a(n) = floor(4^(n+1)/5). - Mircea Merca, Dec 26 2010
G.f.: 3*x / ( (x-1)*(4*x-1)*(1+x) ). - Joerg Arndt, Jan 08 2011
a(n) = 3*A033114(n). - R. J. Mathar, Jan 08 2011

A175046 Write n in binary, then increase each run of 0's by one 0, and increase each run of 1's by one 1. a(n) is the decimal equivalent of the result.

Original entry on oeis.org

3, 12, 7, 24, 51, 28, 15, 48, 99, 204, 103, 56, 115, 60, 31, 96, 195, 396, 199, 408, 819, 412, 207, 112, 227, 460, 231, 120, 243, 124, 63, 192, 387, 780, 391, 792, 1587, 796, 399, 816, 1635, 3276, 1639, 824, 1651, 828, 415, 224, 451, 908, 455, 920, 1843, 924
Offset: 1

Views

Author

Leroy Quet, Dec 02 2009

Keywords

Comments

A318921 expands the runs in a similar way, and A318921(a(n)) = A001477(n). - Andrew Weimholt, Sep 08 2018
From Chai Wah Wu, Nov 18 2018: (Start)
Let f(k) = Sum_{i=2^k..2^(k+1)-1} a(i), i.e., the sum ranges over all numbers with a (k+1)-bit binary expansion. Thus f(0) = a(1) = 3 and f(1) = a(2) + a(3) = 19.
Then f(k) = 20*6^(k-1) - 2^(k-1) for k > 0.
Proof: by summing over the recurrence relations for a(n) (see formula section), we get f(k+2) = Sum_{i=2^k..2^(k+1)-1} (f(4i) + f(4i+1) + f(4i+2) + f(4i+3)) = Sum_{i=2^k..2^(k+1)-1} (6*a(2i) + 6*a(2i+1) + 4) = 6*f(k+1) + 2^(k+2). Solving this first-order recurrence relation with the initial condition f(1) = 19 shows that f(k) = 20*6^(k-1)-2^(k-1) for k > 0.
(End)

Examples

			6 in binary is 110. Increase each run by one digit to get 11100, which is 28 in decimal. So a(6) = 28.
		

Crossrefs

Cf. A175047, A175048, A324127 (partial sums).
For records see A319422, A319423, A319424.

Programs

  • Haskell
    import Data.List (group)
    a175046 = foldr (\b v -> 2 * v + b) 0 .
              concatMap (\bs@(b:_) -> b : bs) . group . a030308_row
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Mathematica
    a[n_] := (Append[#, #[[1]]]& /@ Split[IntegerDigits[n, 2]]) // Flatten // FromDigits[#, 2]&;
    Array[a, 60] (* Jean-François Alcover, Nov 12 2018 *)
  • PARI
    A175046(n)={for(i=2,#n=binary (n*2+bittest (n,0)),n[i]!=n[i-1]&&n[i-1]*=[1,1]);fromdigits(concat(n),2)} \\ M. F. Hasler, Sep 08 2018
    
  • Python
    from re import split
    def A175046(n):
        return int(''.join(d+'1' if '1' in d else d+'0' for d in split('(0+)|(1+)',bin(n)[2:]) if d != '' and d != None),2) # Chai Wah Wu, Sep 24 2018
    
  • Python
    def a(n):
        b = bin(n)[2:]
        return int(b.replace("01", "001").replace("10", "110") + b[-1], 2)
    print([a(n) for n in range(1, 55)]) # Michael S. Branicky, Dec 07 2021

Formula

2n+1 <= a(n) < 2*(n+1/n)^2; a(n) mod 4 = 3*(n mod 2). - M. F. Hasler, Sep 08 2018
a(n) <= (9*n^2 + 12*n)/5, with equality iff n = (2/3)*(4^k-1) = A182512(k) for some k, i.e., n = 10101...10 in binary. - Conjectured by N. J. A. Sloane, Sep 09 2018, proved by M. F. Hasler, Sep 12 2018
From M. F. Hasler, Sep 12 2018: (Start)
Proof of N. J. A. Sloane's formula: For given (binary) length L(n) = floor(log_2(n)+1), the length of a(n) is maximal, L(a(n)) = 2*L(n), if and only if n's bits are alternating, i.e., n in A020988 (if even) or in A002450 (if odd).
For n = A020988(k) (= k times '10' in base 2) = (4^k - 1)*2/3, one has a(n) = A108020(k) (= k times '1100' in base 2) = (16^k - 1)*4/5. This yields a(n)/n = (4^k + 1)*6/5 = (n*9 + 12)/5, i.e., the given upper bound.
For n = A002450(k) = (4^k - 1)/3, one gets a(n) = A182512(k) = (16^k - 1)/5, whence a(n)/n = (4^k + 1)*3/5 = (n*9 + 6)/5, smaller than the bound.
If L(a(n)) < 2 L(n) - 1, then log_2(a(n)) < floor(log_2(a(n))+1) = L(a(n)) <= 2*L(n) - 2 = 2*floor(log_2(n)+1)-2 = 2*floor(log_2(n)) <= 2*log_2(n), whence a(n) < n^2.
It remains to consider the case L(a(n)) = 2 L(n) - 1. There are two possibilities:
If n = 10..._2, then n >= 2^(L(n)-1) and a(n) = 1100..._2 < 1101_2 * 2^(L(a(n))-4) = 13*2^(2*L(n)-5), so a(n)/n^2 < 13*2^(-5+2) = 13/8 = 1.625 < 9/5 = 1.8.
If n = 11..._2, then n >= 3*2^(L(n)-2) and a(n) = 111..._2 < 2^L(a(n)) = 2^(2*L(n)-1), so a(n)/n^2 < 2^(-1+4)/9 = 8/9 < 1 < 9/5.
This shows that a(n)/n^2 <= 9/5 + 12/(5*n) always holds, with equality iff n is in A020988; and a(n)/n^2 < 13/8 if n is not in A020988 or A002450. (End)
From M. F. Hasler, Sep 10 2018: (Start)
Right inverse of A318921: A318921 o A175046 = id (= A001477).
a(A020988(k)) = A108020(k); a(A002450(k)) = A182512(k); a(A000225(k)) = A000225(k+1) (achieves the lower bound a(n) >= 2n + 1) for all k >= 0. (End)
From David A. Corneth, Sep 20 2018: (Start)
a(4*k) = 2*a(2*k).
a(4*k+1) = 4*a(2*k) + 3.
a(4*k+2) = 4*a(2*k+1).
a(4*k+3) = 2*a(2*k+1) + 1. (End)

Extensions

Extended by Ray Chandler, Dec 18 2009

A109499 Number of closed walks of length n on the complete graph on 5 nodes from a given node.

Original entry on oeis.org

1, 0, 4, 12, 52, 204, 820, 3276, 13108, 52428, 209716, 838860, 3355444, 13421772, 53687092, 214748364, 858993460, 3435973836, 13743895348, 54975581388, 219902325556, 879609302220, 3518437208884, 14073748835532
Offset: 0

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Crossrefs

Cf. A108020 (bisection), A109502.

Programs

  • GAP
    a:=[1,0];; for n in [3..30] do a[n]:=3*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Mar 23 2019
  • Magma
    [(4^n + 4*(-1)^n)/5: n in [0..30]]; // Vincenzo Librandi, Aug 12 2011
    
  • Mathematica
    CoefficientList[Series[(1-3*x)/(1-3*x-4*x^2), {x,0,30}], x] (* or *) LinearRecurrence[{3,4}, {1,0}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    a(n)=(4^n+4*(-1)^n)/5 \\ Charles R Greathouse IV, Oct 01 2012
    
  • Sage
    [(4^n+4*(-1)^n)/5 for n in (0..30)] # G. C. Greubel, Mar 23 2019
    

Formula

G.f.: (1 - 3*x)/(1 - 3*x - 4*x^2).
a(n) = (4^n + 4*(-1)^n)/5.
a(n+1) = 4*A015521(n). - Paul Curtz, Nov 01 2009
a(n) = 3*a(n-1) + 4*a(n-1). - G. C. Greubel, Dec 30 2017
a(n) = A108020((n - 1) / 2) = 'ccc...c' (n digits) in base 16, for odd n. - Georg Fischer, Mar 23 2019
E.g.f.: (exp(4*x) + 4*exp(-x))/5. - G. C. Greubel, Mar 23 2019

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006

A182512 a(n) = (16^n - 1)/5.

Original entry on oeis.org

0, 3, 51, 819, 13107, 209715, 3355443, 53687091, 858993459, 13743895347, 219902325555, 3518437208883, 56294995342131, 900719925474099, 14411518807585587, 230584300921369395, 3689348814741910323, 59029581035870565171, 944473296573929042739
Offset: 0

Views

Author

Brad Clardy, May 03 2012

Keywords

Comments

Even bisection of A015521 and also A112627. All of the terms are divisible by 3, even terms by 17.
These are binary numbers 11, 110011, 1100110011, ... - Jamie Simpson, Oct 28 2022

Crossrefs

Programs

  • Magma
    [(1/5)*2^(4*i) -(1/5): i in [0..30]];
    
  • Maple
    seq((16^n-1)/5, n=0..50); # Robert Israel, Jan 22 2016
  • Mathematica
    (16^Range[0,20]-1)/5 (* Harvey P. Dale, Aug 07 2019 *)
    LinearRecurrence[{17,-16},{0,3},20] (* Harvey P. Dale, Aug 07 2019 *)
  • PARI
    a(n) = (16^n - 1)/5; \\ Michel Marcus, Jan 22 2016

Formula

a(n) = 16*a(n-1) + 3 where a(0)=0.
a(n) = A015521(2n).
a(n) = A112627(2n) for n >= 1; a(0)=0.
G.f.: 3*x / ( (16*x-1)*(x-1) ). - R. J. Mathar, Apr 20 2015
a(n) = 3*A131865(n-1). - R. J. Mathar, Apr 20 2015
a(n) = A108020(n)/4. - Jamie Simpson, Oct 28 2022
Showing 1-4 of 4 results.