cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A015448 a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.

Original entry on oeis.org

1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141, 701408733, 2971215073, 12586269025, 53316291173, 225851433717, 956722026041, 4052739537881, 17167680177565, 72723460248141, 308061521170129, 1304969544928657, 5527939700884757
Offset: 0

Views

Author

Keywords

Comments

If one deletes the leading 0 in A084326, takes the inverse binomial transform, and adds a(0)=1 in front, one obtains this sequence here. - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
For n >= 1, row sums of triangle
m |k=0 1 2 3 4 5 6 7
====+=============================================
0 | 1
1 | 1 4
2 | 1 4 16
3 | 1 8 16 64
4 | 1 8 48 64 256
5 | 1 12 48 256 256 1024
6 | 1 12 96 256 1280 1024 4096
7 | 1 16 96 640 1280 6144 4096 16384
which is triangle for numbers 4^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) = a(n;-2) = 3^n*Sum_{k=0..n} binomial(n,k)*F(k+1)*(-2/3)^k, where a(n;d), n=0,1,...,d, denotes the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). We note that (see A033887) F(3n+1) = 3^n*a(n,2/3) = Sum_{k=0..n} binomial(n,k)*F(k-1)*(-2/3)^k, which implies F(3n+1) + 3^(-n)*a(n) = Sum_{k=0..n} binomial(n,k)*L(k)*(-2/3)^k, where L(k) denotes the k-th Lucas number. - Roman Witula, Jul 12 2012
a(n+1) is (for n >= 0) the number of length-n strings of 5 letters {0,1,2,3,4} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 4, 4*3, 4*3^2, 4*3^3, ...); i.e., of A003946: (1, 4, 12, 36, 108, ...). - Gary W. Adamson, Aug 06 2016
a(n+1) equals the number of quinary sequences of length n such that no two consecutive terms differ by 3. - David Nacin, May 31 2017

Crossrefs

Cf. A001076, A147722 (INVERT transform), A109499 (INVERTi transform), A154626 (Binomial transform), A086344 (inverse binomial transform), A003946, A049310.

Programs

Formula

a(n) = Fibonacci(3n-1) = ( (1+sqrt(5))*(2-sqrt(5))^n - (1-sqrt(5))*(2+sqrt(5))^n )/ (2*sqrt(5)).
O.g.f.: (1-3*x)/(1-4*x-x^2). - Len Smiley, Dec 09 2001
a(n) = Sum_{k=0..n} 3^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
a(n) = upper left term in the 2 X 2 matrix [1,2; 2,3]^n. - Gary W. Adamson, Mar 02 2008
[a(n), A001076(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = A167808(3*n-1) for n > 0. - Reinhard Zumkeller, Nov 12 2009
a(n) = Fibonacci(3n+1) mod Fibonacci(3n), n > 0.
a(n) = (A000032(3*n)-Fibonacci(3*n))/2 = (A014448(n)-A014445(n))/2.
For n >= 2, a(n) = F_n(4) + F_(n+1)(4), where F_n(x) is a Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = A001076(n+1) - 3*A001076(n). - R. J. Mathar, Jul 12 2012
From Gary Detlefs and Wolfdieter Lang, Aug 20 2012: (Start)
a(n) = (5*F(n)^3 + 5*F(n-1)^3 + 3*(-1)^n*F(n-2))/2,
a(n) = (F(n+1)^3 + 2*F(n)^3 - F(n-2)^3)/2, n >= 0, with F(-1) = 1 and F(-2) = -1. Second line from first one with 3*(-1)^n* F(n-2) = F(n-1)^3 - 4*F(n-2)^3 - F(n-3)^3 (in Koshy's book, p. 89, 32. (with a - sign) and 33. For the Koshy reference see A000045) and the F^3 recurrence (see row n=4 of A055870, or Koshy p. 87, 1.). First line from the preceding R. J. Mathar formula with F(3*n) = 5*F(n)^3 + 3*(-1)^n*F(n) (Koshy p. 89, 46.) and the above mentioned formula, Koshy's 32. and 33., with n -> n+2 in order to eliminate F(n+1)^3. (End)
For n > 0, a(n) = L(n-1)*L(n)*F(n) + F(n+1)*(-1)^n with L(n)=A000032(n). - J. M. Bergot, Dec 10 2015
For n > 1, a(n)^2 is the denominator of continued fraction [4,4,...,4, 6, 4,4,...4], which has n-1 4's before, and n-1 4's after, the middle 6. - Greg Dresden, Sep 18 2019
From Gary Detlefs and Wolfdieter Lang, Mar 06 2023: (Start)
a(n) = A001076(n) + A001076(n-1), with A001076(-1) = 1. See the R. J. Mathar formula above.
a(n+1) = i^n*(S(n-1,-4*i) - i*S(n-2,-4*i)), for n >= 0, with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. From the simplified Fibonacci trisection formula for {F(3*n+2)}_{n>=0}. (End)
a(n) = Sum_{k=0..n} A046854(n-1,k)*4^k. - R. J. Mathar, Feb 10 2024
E.g.f.: exp(2*x)*(5*cosh(sqrt(5)*x) - sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Jun 03 2024

A015531 Linear 2nd order recurrence: a(n) = 4*a(n-1) + 5*a(n-2).

Original entry on oeis.org

0, 1, 4, 21, 104, 521, 2604, 13021, 65104, 325521, 1627604, 8138021, 40690104, 203450521, 1017252604, 5086263021, 25431315104, 127156575521, 635782877604, 3178914388021, 15894571940104, 79472859700521, 397364298502604, 1986821492513021, 9934107462565104
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct vertices of the complete graph K_6. Example: a(2)=4 because the walks of length 2 between the vertices A and B of the complete graph ABCDEF are: ACB, ADB, AEB and AFB. - Emeric Deutsch, Apr 01 2004
General form: k=5^n-k. Also: A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-4, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=charpoly(A,1). - Milan Janjic, Jan 27 2010
Pisano period lengths: 1, 2, 6, 2, 2, 6, 6, 4, 18, 2, 10, 6, 4, 6, 6, 8, 16, 18, 18, 2,... - R. J. Mathar, Aug 10 2012
The ratio a(n+1)/a(n) converges to 5 as n approaches infinity. - Felix P. Muga II, Mar 09 2014
For odd n, a(n) is congruent to 1 (mod 10). For even n > 0, a(n) is congruent to 4 (mod 10). - Iain Fox, Dec 30 2017

Crossrefs

A083425 shifted right.
Cf. A033115 (partial sums), A213128.

Programs

Formula

From Paul Barry, Apr 20 2003: (Start)
a(n) = (5^n -(-1)^n)/6.
G.f.: x/((1-5*x)*(1+x)).
E.g.f.(exp(5*x)-exp(-x))/6. (End) (corrected by M. F. Hasler, Jan 29 2012)
a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*6^(k-1). - Paul Barry, May 13 2003
a(n) = 5^(n-1) - a(n-1). - Emeric Deutsch, Apr 01 2004
a(n) = ((2+sqrt(9))^n - (2-sqrt(9))^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
a(n) = round(5^n/6). - Mircea Merca, Dec 28 2010
The logarithmic generating function 1/6*log((1+x)/(1-5*x)) = x + 4*x^2/2 + 21*x^3/3 + 104*x^4/4 + ... has compositional inverse 6/(5+exp(-6*x)) - 1, the e.g.f. for a signed version of A213128. - Peter Bala, Jun 24 2012
a(n) = (-1)^(n-1)*Sum_{k=0..(n-1)} A135278(n-1,k)*(-6)^k = (5^n - (-1)^n)/6 = (-1)^(n-1)*Sum_{k=0..(n-1)} (-5)^k. Equals (-1)^(n-1)*Phi(n,-5) when n is an odd prime, where Phi is the cyclotomic polynomial. - Tom Copeland, Apr 14 2014

A015565 a(n) = 7*a(n-1) + 8*a(n-2), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 7, 57, 455, 3641, 29127, 233017, 1864135, 14913081, 119304647, 954437177, 7635497415, 61083979321, 488671834567, 3909374676537, 31274997412295, 250199979298361, 2001599834386887, 16012798675095097, 128102389400760775, 1024819115206086201, 8198552921648689607
Offset: 0

Views

Author

Keywords

Comments

A linear 2nd order recurrence. A Jacobsthal number sequence.
Binomial transform of A053573 (preceded by zero). - Paul Barry, Apr 09 2003
Second binomial transform of A080424. Binomial transform of A053573, with leading zero. Binomial transform is 0,1,9,81,729,....(9^n - 0^n)/9. Second binomial transform is 0,1,11,111,1111,... (A002275: repunits). - Paul Barry, Mar 14 2004
Number of walks of length n between any two distinct nodes of the complete graph K_9. Example: a(2)=7 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHI are: ACB, ADB, AEB, AFB, AGB, AHB and AIB. - Emeric Deutsch, Apr 01 2004
Unsigned version of A014990. - Philippe Deléham, Feb 13 2007
The ratio a(n+1)/a(n) converges to 8 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

Examples

			G.f. = x + 7*x^2 + 57*x^3 + 455*x^4 + 3641*x^5 + 29127*x^6 + 233017*x^7 + ...
		

Crossrefs

Programs

Formula

From Paul Barry, Apr 09 2003: (Start)
a(n) = (8^n - (-1)^n)/9.
a(n) = J(3*n)/3 = A001045(3*n)/3. (End)
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 8^(n-1) - a(n-1).
G.f.: x/(1-7*x-8*x^2). (End)
a(n) = Sum_{k = 0..n} A106566(n,k)*A099322(k). - Philippe Deléham, Oct 30 2008
a(n) = round(8^n/9). - Mircea Merca, Dec 28 2010
From Peter Bala, May 31 2024: (Start)
G.f: A(x) = x/(1 - x^2) o x/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A054878.
The black diamond product A(x) o A(x) is the g.f. for the number of walks of length n between any two distinct nodes of the complete graph K_81.
Row 8 of A062160. (End)
E.g.f.: exp(-x)*(exp(9*x) - 1)/9. - Elmo R. Oliveira, Aug 17 2024

A015552 a(n) = 6*a(n-1) + 7*a(n-2), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 6, 43, 300, 2101, 14706, 102943, 720600, 5044201, 35309406, 247165843, 1730160900, 12111126301, 84777884106, 593445188743, 4154116321200, 29078814248401, 203551699738806, 1424861898171643, 9974033287201500, 69818233010410501, 488727631072873506
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_8. Example: a(2)=6 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGH are: ACB, ADB, AEB, AFB, AGB and AHB. - Emeric Deutsch, Apr 01 2004
The ratio a(n+1)/a(n) converges to 7 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

Examples

			G.f. = x + 6*x^2 + 43*x^3 + 300*x^4 + 2101*x^5 + 14706*x^6 + 102943*x^7 + ...
		

Crossrefs

Programs

  • Magma
    [Round(7^n/8): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
  • Maple
    seq(round(7^n/8),n=0..25); # Mircea Merca, Dec 28 2010
  • Mathematica
    k=0;lst={k};Do[k=7^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[(7^n - (-1)^n)/8, {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    {a(n) = if ( n<0, 0, (7^n - (-1)^n) / 8)};
    
  • Sage
    [lucas_number1(n,6,-7) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 6*a(n-1) + 7*a(n-2).
From Emeric Deutsch, Apr 01 2004: (Start)
G.f.: x/(1-6*x-7*x^2).
a(n) = 7^(n-1) - a(n-1). (End)
a(n) = (7^n - (-1)^n)/8. - Rolf Pleisch, Jul 06 2009
a(n) = round(7^n/8). - Mircea Merca, Dec 28 2010
E.g.f. exp(3*x)*sinh(4*x)/4. - Elmo R. Oliveira, Aug 17 2024

A015540 a(n) = 5*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 5, 31, 185, 1111, 6665, 39991, 239945, 1439671, 8638025, 51828151, 310968905, 1865813431, 11194880585, 67169283511, 403015701065, 2418094206391, 14508565238345, 87051391430071, 522308348580425, 3133850091482551, 18803100548895305, 112818603293371831
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct vertices of the complete graph K_7. Example: a(2)=5 because the walks of length 2 between the vertices A and B of the complete graph ABCDEFG are ACB, ADB, AEB, AFB and AGB. - Emeric Deutsch, Apr 01 2004
Pisano period lengths: 1, 1, 2, 2, 2, 2, 14, 2, 2, 2, 10, 2, 12, 14, 2, 2, 16, 2, 18, 2, ... - R. J. Mathar, Aug 10 2012
Sum_{i=0..m} (-1)^(m+i)*6^i, for m >= 0, gives all terms after 0. - Bruno Berselli, Aug 28 2013
The ratio a(n+1)/a(n) converges to 6 as n approaches infinity. Also A053524, A080424, A051958. - Felix P. Muga II, Mar 09 2014

Examples

			G.f. = x + 5*x^2 + 31*x^3 + 185*x^4 + 1111*x^5 + 6665*x^6 + 39991*x^7 + ...
		

Crossrefs

Partial sums are in A033116. Cf. A014987.

Programs

  • Magma
    [Floor(6^n/7-(-1)^n/7): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
    
  • Maple
    seq(round(6^n/7),n=0..25); # Mircea Merca, Dec 28 2010
  • Mathematica
    k=0; lst={k}; Do[k = 6^n-k; AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    CoefficientList[Series[x / ((1 - 6 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    LinearRecurrence[{5,6},{0,1},30] (* Harvey P. Dale, May 12 2015 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/((1-6*x)*(1+x)))) \\ G. C. Greubel, Jan 24 2018
    
  • PARI
    a(n) = round(6^n/7); \\ Altug Alkan, Sep 05 2018
  • Sage
    [lucas_number1(n,5,-6) for n in range(21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 6*a(n-2).
From Paul Barry, Apr 20 2003: (Start)
a(n) = (6^n - (-1)^n)/7.
G.f.: x/((1-6*x)*(1+x)).
E.g.f.: (exp(6*x) - exp(-x))/7. (End)
a(n) = 6^(n-1) - a(n-1). - Emeric Deutsch, Apr 01 2004
a(n+1) = Sum_{k=0..n} binomial(n-k, k)*5^(n-2*k)*6^k. - Paul Barry, Jul 29 2004
a(n) = round(6^n/7). - Mircea Merca, Dec 28 2010
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} A135278(n-1,k)*(-7)^k = (6^n - (-1)^n)/7 = (-1)^(n-1)*Sum_{k=0..n-1} (-6)^k. Equals (-1)^(n-1)*Phi(n,-6), where Phi is the cyclotomic polynomial when n is an odd prime. (For n > 0.) - Tom Copeland, Apr 14 2014

A109500 Number of closed walks of length n on the complete graph on 6 nodes from a given node.

Original entry on oeis.org

1, 0, 5, 20, 105, 520, 2605, 13020, 65105, 325520, 1627605, 8138020, 40690105, 203450520, 1017252605, 5086263020, 25431315105, 127156575520, 635782877605, 3178914388020, 15894571940105, 79472859700520
Offset: 0

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Crossrefs

Cf. A109502.
Cf. sequences with the same recurrence form: A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

Programs

  • Magma
    [(5^n + 5*(-1)^n)/6: n in [0..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    k=0;lst={k};Do[k=5^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    CoefficientList[Series[(1 - 4*x)/(1 - 4*x - 5*x^2), {x, 0, 50}], x] (* or *) Table[(5^n + 5*(-1)^n)/6, {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=0, 30, print1((5^n + 5*(-1)^n)/6, ", ")) \\ G. C. Greubel, Dec 30 2017
    

Formula

G.f.: (1 - 4*x)/(1 - 4*x - 5*x^2).
a(n) = (5^n + 5*(-1)^n)/6.
a(n) = 5^(n-1) - a(n-1), a(0) = 1. - Jon E. Schoenfield, Feb 08 2015

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006
Edited by Jon E. Schoenfield, Feb 08 2015

A015585 a(n) = 9*a(n-1) + 10*a(n-2).

Original entry on oeis.org

0, 1, 9, 91, 909, 9091, 90909, 909091, 9090909, 90909091, 909090909, 9090909091, 90909090909, 909090909091, 9090909090909, 90909090909091, 909090909090909, 9090909090909091, 90909090909090909, 909090909090909091, 9090909090909090909, 90909090909090909091
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_11. Example: a(2)=9 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJK are: ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB and AKB. - Emeric Deutsch, Apr 01 2004
Beginning with n=1 and a(1)=1, these are the positive integers whose balanced base-10 representations (A097150) are the first n digits of 1,-1,1,-1,.... Also, a(n) = (-1)^(n-1)*A014992(n) = |A014992(n)| for n >= 1. - Rick L. Shepherd, Jul 30 2004

Crossrefs

Programs

Formula

a(n) = 9*a(n-1) + 10*a(n-2).
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 10^(n-1) - a(n-1).
G.f.: x/(1 - 9x - 10x^2). (End)
From Henry Bottomley, Sep 17 2004: (Start)
a(n) = round(10^n/11).
a(n) = (10^n - (-1)^n)/11.
a(n) = A098611(n)/11 = 9*A094028(n+1)/A098610(n). (End)
E.g.f.: exp(-x)*(exp(11*x) - 1)/11. - Elmo R. Oliveira, Aug 17 2024

Extensions

Extended by T. D. Noe, May 23 2011

A109501 Number of closed walks of length n on the complete graph on 7 nodes from a given node.

Original entry on oeis.org

1, 0, 6, 30, 186, 1110, 6666, 39990, 239946, 1439670, 8638026, 51828150, 310968906, 1865813430, 11194880586, 67169283510, 403015701066, 2418094206390, 14508565238346, 87051391430070, 522308348580426, 3133850091482550, 18803100548895306, 112818603293371830
Offset: 0

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Crossrefs

Cf. A109502.
Cf. sequences with the same recurrence form: A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A015540. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

Programs

  • Magma
    [(6^n + 6*(-1)^n)/7: n in [0..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    k=0;lst={k};Do[k=6^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    CoefficientList[Series[(1 - 5*x)/(1 - 5*x - 6*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{5,6}, {1,0}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=0,30, print1((6^n + 6*(-1)^n)/7, ", ")) \\ G. C. Greubel, Dec 30 2017
    

Formula

G.f.: (1 - 5*x)/(1 - 5*x - 6*x^2).
a(n) = (6^n + 6*(-1)^n)/7.
a(n) = 6^(n-1) - a(n-1), a(0) = 1. - Jon E. Schoenfield, Feb 09 2015
a(n) = 5*a(n-1) + 6*a(n-2). - G. C. Greubel, Dec 30 2017
E.g.f.: exp(-x)*(exp(7*x) + 6)/7. - Elmo R. Oliveira, Aug 17 2024

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006
Edited by Jon E. Schoenfield, Feb 09 2015

A015577 a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 73, 656, 5905, 53144, 478297, 4304672, 38742049, 348678440, 3138105961, 28242953648, 254186582833, 2287679245496, 20589113209465, 185302018885184, 1667718169966657, 15009463529699912, 135085171767299209, 1215766545905692880, 10941898913151235921
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A011557, with a leading zero. - Paul Barry, Jul 09 2003
Number of walks of length n between any two distinct nodes of the complete graph K_10. Example: a(2) = 8 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJ are: ACB, ADB, AEB, AFB, AGB, AHB, AIB and AJB. - Emeric Deutsch, Apr 01 2004
The ratio a(n+1)/a(n) converges to 9 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

Crossrefs

Programs

Formula

From Paul Barry, Jul 09 2003: (Start)
G.f.: x/((1+x)*(1-9*x)).
E.g.f. exp(4*x)*sinh(5*x)/5.
a(n) = (9^n - (-1)^n)/10. (End)
a(n) = 9^(n-1)-a(n-1). - Emeric Deutsch, Apr 01 2004
a(n) = round(9^n/10). - Mircea Merca, Dec 28 2010

Extensions

Extended by T. D. Noe, May 23 2011

A093134 A Jacobsthal trisection.

Original entry on oeis.org

1, 0, 8, 56, 456, 3640, 29128, 233016, 1864136, 14913080, 119304648, 954437176, 7635497416, 61083979320, 488671834568, 3909374676536, 31274997412296, 250199979298360, 2001599834386888, 16012798675095096, 128102389400760776, 1024819115206086200, 8198552921648689608
Offset: 0

Views

Author

Paul Barry, Mar 23 2004

Keywords

Comments

Counts closed walks at a vertex of the complete graph on 9 nodes K_9.
Second binomial transform is A047855.

Crossrefs

Other sequences with a(n+1) = 8^n - a(n) are A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A109501, A015552, A015565. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
Cf. A047855.

Programs

  • Magma
    [(8^n/9+8*(-1)^n/9): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    k=0;lst={1, k};Do[k=8^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[(8^n + 8*(-1)^n)/9, {n,0,30}] (* or *) LinearRecurrence[{7,8}, {1,0}, 30] (* G. C. Greubel, Jan 06 2018 *)
  • PARI
    for(n=0,30, print1((8^n + 8*(-1)^n)/9, ", ")) \\ G. C. Greubel, Jan 06 2018

Formula

G.f.: (1-7*x)/(1 - 7*x - 8*x^2).
a(n) = (8^n + 8*(-1)^n)/9.
a(n) = 8*A001045(3*n-3)/3.
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(-x)*(exp(9*x) + 8)/9.
a(n) = 7*a(n-1) + 8*a(n-2) for n > 1. (End)
Showing 1-10 of 16 results. Next