cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A015585 a(n) = 9*a(n-1) + 10*a(n-2).

Original entry on oeis.org

0, 1, 9, 91, 909, 9091, 90909, 909091, 9090909, 90909091, 909090909, 9090909091, 90909090909, 909090909091, 9090909090909, 90909090909091, 909090909090909, 9090909090909091, 90909090909090909, 909090909090909091, 9090909090909090909, 90909090909090909091
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_11. Example: a(2)=9 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJK are: ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB and AKB. - Emeric Deutsch, Apr 01 2004
Beginning with n=1 and a(1)=1, these are the positive integers whose balanced base-10 representations (A097150) are the first n digits of 1,-1,1,-1,.... Also, a(n) = (-1)^(n-1)*A014992(n) = |A014992(n)| for n >= 1. - Rick L. Shepherd, Jul 30 2004

Crossrefs

Programs

Formula

a(n) = 9*a(n-1) + 10*a(n-2).
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 10^(n-1) - a(n-1).
G.f.: x/(1 - 9x - 10x^2). (End)
From Henry Bottomley, Sep 17 2004: (Start)
a(n) = round(10^n/11).
a(n) = (10^n - (-1)^n)/11.
a(n) = A098611(n)/11 = 9*A094028(n+1)/A098610(n). (End)
E.g.f.: exp(-x)*(exp(11*x) - 1)/11. - Elmo R. Oliveira, Aug 17 2024

Extensions

Extended by T. D. Noe, May 23 2011

A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2001

Keywords

Comments

For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024

Examples

			From _Seiichi Manyama_, Apr 12 2019: (Start)
Square array begins:
   0, 1, -1,  1,  -1,    1,    -1,      1, ...
   0, 1,  0,  1,   0,    1,     0,      1, ...
   0, 1,  1,  3,   5,   11,    21,     43, ...
   0, 1,  2,  7,  20,   61,   182,    547, ...
   0, 1,  3, 13,  51,  205,   819,   3277, ...
   0, 1,  4, 21, 104,  521,  2604,  13021, ...
   0, 1,  5, 31, 185, 1111,  6665,  39991, ...
   0, 1,  6, 43, 300, 2101, 14706, 102943, ... (End)
		

Crossrefs

Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.

Programs

  • Maple
    seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
  • Mathematica
    T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)

Formula

T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

A178501 Zero followed by powers of ten.

Original entry on oeis.org

0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000, 100000000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 28 2010

Keywords

Comments

The sequence S consisting of the nonnegative numbers arranged in lexicographic order according to their decimal expansion begins 0, 1, 10, 100, 1000, ..., 2, 20, 200, 2000, ..., 3, 30, ... does not have an OEIS entry, since there are uncountably many terms before 2 appears (or even before 100000010000 appears). However, S does begin with the present sequence. - N. J. A. Sloane, Dec 09 2024
a(n)^k + reverse(a(n))^k is a palindrome for any positive integer k. - Bui Quang Tuan, Mar 31 2015

Crossrefs

Cf. A093136, A131577, A140429, A178500; subsequence of A029793.
The powers of 10, A011557, is a subsequence.

Programs

Formula

a(n+1) = A011557(n).
a(n) = A178500(n)/10.
From Paul Barry, Jul 09 2003: (Start)
a(n) = (10^n - 0^n)/10.
E.g.f.: exp(5*x)*sinh(5*x)/5.
Binomial transform of A015577. (End)
G.f.: x/(1 - 10*x). - Chai Wah Wu, Jun 17 2020
From Elmo R. Oliveira, Jul 21 2025: (Start)
a(n) = 10*a(n-1) for n > 1.
a(n) = A093136(n)/2 for n >= 1. (End)

Extensions

More terms from Elmo R. Oliveira, Jul 21 2025

A033119 Base-9 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.

Original entry on oeis.org

1, 9, 82, 738, 6643, 59787, 538084, 4842756, 43584805, 392263245, 3530369206, 31773322854, 285959905687, 2573639151183, 23162752360648, 208464771245832, 1876182941212489, 16885646470912401, 151970818238211610
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A015577. - Mircea Merca, Dec 28 2010

Examples

			Base 9...........Decimal
1......................1
10.....................9
101...................82
1010.................738
10101...............6643
101010.............59787
1010101...........538084
10101010.........4842756
101010101.......43584805, etc. - _Philippe Deléham_, Mar 23 2014
		

Crossrefs

Cf. A015577.

Programs

Formula

a(n) = round((9*9^n-9)/80) = round((9*9^n-5)/80) = floor((9*9^n-1)/80) = ceiling((9*9-9)/80); a(n) = a(n-2) + 9^(n-1), n > 1. - Mircea Merca, Dec 28 2010
From Joerg Arndt, Jan 08 2011: (Start)
G.f.: x / ( (x-1)*(9*x-1)*(1+x) ).
a(n) = 9*a(n-1) + a(n-2) - 9*a(n-3). (End)

A015592 a(n) = 10*a(n-1) + 11*a(n-2).

Original entry on oeis.org

0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_12. Example: a(2)=10 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKL are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB and ALB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

Formula

a(n) = 11^(n-1) - a(n-1). G.f.: x/(1 - 10x - 11x^2). - Emeric Deutsch, Apr 01 2004
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(5*x)*sinh(6*x)/6.
a(n) = (11^n - (-1)^n)/12. (End)

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A015609 a(n) = 11*a(n-1) + 12*a(n-2).

Original entry on oeis.org

0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_13. Example: a(2)=11 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKLM are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB, ALB and AMB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

  • Magma
    [(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
  • Sage
    [lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
    
  • Sage
    [abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
    

Formula

From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 12^(n-1) - a(n-1).
G.f.: x/(1 - 11*x - 12*x^2). (End)
E.g.f.: exp(-x)*(exp(13*x) - 1)/13. - Stefano Spezia, Mar 11 2020

A177881 Partial sums of round(3^n/10).

Original entry on oeis.org

0, 0, 1, 4, 12, 36, 109, 328, 984, 2952, 8857, 26572, 79716, 239148, 717445, 2152336, 6457008, 19371024, 58113073, 174339220, 523017660, 1569052980, 4707158941, 14121476824, 42364430472, 127093291416
Offset: 0

Views

Author

Mircea Merca, Dec 28 2010

Keywords

Examples

			a(4) = 0 + 0 + 1 + 3 + 8 = 12.
		

Crossrefs

Cf. A015577 (bisection of round(3^n/10)).

Programs

  • Magma
    [Round((3*3^n-3)/20): n in [0..30]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    A177881 := proc(n) add( round(3^i/10),i=0..n) ; end proc:
  • Mathematica
    Table[(3^(n + 1) + (3 - (-1)^n) i^(n (n + 1)) - 5)/20, {n, 0, 25}] (* Bruno Berselli, May 12 2021 *)
  • PARI
    a(n)=(3^(n+1)-1)\20 \\ Charles R Greathouse IV, Jun 23 2011

Formula

G.f.: x^2/((1 - x)*(1 - 3*x)*(1 + x^2)).
a(n) = round((3*3^n - 3)/20) = round((3*3^n - 5)/20).
a(n) = floor((3*3^n - 1)/20).
a(n) = ceiling((3*3^n - 9)/20).
a(n) = a(n-4) + 4*3^(n-3), n > 3.
a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4), n > 3.
a(n) = (3^(n+1) + (3 - (-1)^n)*i^(n*(n+1)) - 5)/20, where i = sqrt(-1) - Bruno Berselli, May 12 2021
Showing 1-8 of 8 results.