cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A010763 a(n) = binomial(2n+1, n+1) - 1.

Original entry on oeis.org

0, 2, 9, 34, 125, 461, 1715, 6434, 24309, 92377, 352715, 1352077, 5200299, 20058299, 77558759, 300540194, 1166803109, 4537567649, 17672631899, 68923264409, 269128937219, 1052049481859, 4116715363799, 16123801841549, 63205303218875, 247959266474051
Offset: 0

Views

Author

Keywords

Comments

(With a different offset:) p divides a(p) for prime p. p^2 divides a(p) for prime p > 2. p^3 divides a(p) for prime p > 3 (implied by Wolstenholme's theorem). Wolstenholme's quotients are listed in A034602(n) = a(prime(n))/prime(n)^3 = {1, 5, 265, 2367, 237493, 2576561, 338350897, ...} = a(p)/p^3 for prime p > 3. p^3 divides a(p^k) for prime p > 3 and integer k > 0. Primes in a(n) are listed in A112862(n) = {2, 461, 92377, 269128937219, ...} Primes of the form (2*n)!/(2*(n!)^2) - 1. Numbers n such that a(n) is prime are listed in A112861(n) = {2, 6, 10, 21, 45, 63, 306, 404, 437, 471, 646, ...}. - Alexander Adamchuk, Jan 05 2007
a(n-1) is the number of weak compositions of n into n parts in which at least one part is zero. a(3)=34 since 4 can be written as 4+0+0+0 (4 such compositions); 3+1+0+0 (12 such compositions); 2+2+0+0 (6 such compositions); 2+1+1+0 (12 such compositions). All these weak compositions contain at least one zero. - Enrique Navarrete, Jan 09 2022

Crossrefs

Programs

  • Magma
    [Binomial(2*n-1,n-1)-1: n in [1..30]]; // Vincenzo Librandi, Mar 21 2013
    
  • Maple
    A010763:=n->binomial(2*n+1, n+1) - 1: seq(A010763(n), n=0..30); # Wesley Ivan Hurt, Sep 05 2015
  • Mathematica
    Table[Binomial[2n - 1, n - 1] - 1, {n, 20}] (* Alonso del Arte, Dec 13 2012 *)
    CoefficientList[Series[Exp[2*x]*(BesselI[0,2*x] + BesselI[1,2*x]) - Exp[x], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Dec 02 2018 *)
  • PARI
    a(n) = binomial(2*n+1, n+1) - 1;
    vector(30, n, a(n-1)) \\ Michel Marcus, Sep 05 2015
    
  • PARI
    first(n) = x='x+O('x^n); Vec((1 - sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)) - 1/(1 - x), -n) \\ Iain Fox, Dec 19 2017 (corrected by Iain Fox, Oct 24 2018)

Formula

a(n) = (n/(2n+2))*Sum_{k = 1..n+1} C(2n+2, k)/C(n+1, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{i = 1..n} C(n + i, n). - Benoit Cloitre, Oct 15 2002
a(n + 1) = C(2n - 1, n - 1) - 1. - Alonso del Arte, Dec 15 2012
From Ilya Gutkovskiy, Feb 07 2017: (Start)
O.g.f.: (1 - sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)) - 1/(1 - x).
E.g.f.: exp(2*x)*(BesselI(0,2*x) + BesselI(1,2*x)) - exp(x). (End)

A066726 Numbers n such that binomial(2n, n) - 1 is prime.

Original entry on oeis.org

2, 3, 5, 9, 15, 29, 43, 51, 113, 184, 213, 222, 267, 279, 369, 402, 441, 603, 812, 839, 902, 1422, 1542, 1824, 2983, 3065, 3911, 3958, 4192, 4587, 4865, 5543, 5837, 7902, 9299, 9722, 10412, 10648, 11498, 12803, 14428, 15876, 20173, 26311, 38927, 52210, 54189, 59757, 60454, 72094, 76899, 85033, 91059, 91059
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2002

Keywords

Comments

I.e., numbers n such that (2*n)!/(n!)^2-1 is prime. - Hugo Pfoertner, Sep 25 2005
The next term is > 30000. - Vaclav Kotesovec, May 03 2021
a(55) > 100000. - Robert Price, Jul 02 2024

Crossrefs

Cf. A092751 = primes of the form (2*n)!/(n!)^2-1, A112853 = (2*n)!/n!-1 is prime, A112855 = (2*n)!/n!+1 is prime, A066699 = (2*n)!/(n!)^2+1 is prime, A112861 = (2*n)!/(2*(n!)^2)-1 is prime, A112863 = (2*n)!/(2*(n!)^2)+1 is prime. - Hugo Pfoertner, Sep 25 2005

Programs

  • Mathematica
    Do[ If[ PrimeQ[ Binomial[2n, n] - 1], Print[n]], {n, 1, 2000} ]
  • PARI
    is(n)=isprime(binomial(2*n,n)-1) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from Ed Pegg Jr, Sep 10 2003
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar
a(43)-a(44) from Vaclav Kotesovec, May 03 2021
a(45)-a(54) from Robert Price, Jul 02 2024

A112853 Numbers k such that (2*k)!/k!-1 is prime.

Original entry on oeis.org

2, 6, 14, 25, 114, 188, 193, 361, 712, 1767, 3195, 4995, 5682, 6485, 9937
Offset: 1

Views

Author

Hugo Pfoertner, Sep 25 2005

Keywords

Comments

Next term is > 9680.

Crossrefs

Cf. A112854 primes of the form (2*n)!/n!-1, A112855 (2*n)!/n!+1 is prime, A066726 (2*n)!/(n!)^2-1 is prime, A066699 (2*n)!/(n!)^2+1 is prime, A112861 (2*n)!/(2*(n!)^2)-1 is prime, A112863 (2*n)!/(2*(n!)^2)+1 is prime.

Programs

  • Mathematica
    Select[Range[7000], PrimeQ[(2#)!/#!-1]&] (* James C. McMahon, Jun 12 2024 *)

Extensions

a(15) from Michael S. Branicky, Jun 12 2024

A112855 Numbers n such that (2*n)!/n!+1 is prime.

Original entry on oeis.org

1, 2, 5, 10, 24, 30, 72, 340, 379, 712, 1020, 1647, 3654, 7923
Offset: 1

Views

Author

Hugo Pfoertner, Sep 25 2005

Keywords

Comments

Next term is > 10000.

Crossrefs

Cf. A112856 primes of the form (2*n)!/n!+1, A112853 (2*n)!/n!-1 is prime, A066726 (2*n)!/(n!)^2-1 is prime, A112859 (2*n)!/(n!)^2+1 is prime, A112861 (2*n)!/(2*(n!)^2)-1 is prime, A112863 (2*n)!/(2*(n!)^2)+1 is prime.

Programs

  • Mathematica
    Select[Range[8000],PrimeQ[(2#)!/#!+1]&] (* Harvey P. Dale, Mar 23 2012 *)

A112863 Numbers k such that (2*k)!/(2*(k!)^2)+1 is prime.

Original entry on oeis.org

1, 3, 5, 6, 14, 19, 24, 45, 49, 62, 72, 122, 149, 197, 209, 222, 349, 409, 491, 527, 601, 675, 728, 769, 795, 853, 1039, 1318, 1599, 2069, 2279, 2567, 2634, 3286, 3482, 6880, 6919, 9117, 9276, 9564, 10898, 13061, 14570, 16493, 17366, 18773, 19901, 25569, 26611, 28322
Offset: 1

Views

Author

Hugo Pfoertner, Sep 30 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],PrimeQ[(2#)!/(2(#!)^2)+1]&] (* James C. McMahon, Jun 13 2024 *)
  • PARI
    isok(k) = ispseudoprime(1+binomial(2*k-1, k-1)); \\ Michel Marcus, Jun 14 2024

Extensions

a(42)-a(43) from Charles R Greathouse IV, Sep 26 2006
a(44)-a(50) from Michael S. Branicky, Jul 24 2024

A112862 Primes of the form (2*k)!/(2*(k!)^2)-1.

Original entry on oeis.org

2, 461, 92377, 269128937219, 51913710643776705684835559, 3017467217880703353213932318284163999
Offset: 1

Views

Author

Hugo Pfoertner, Sep 30 2005

Keywords

Comments

The next term (2*306)!/(2*(306!)^2)-1 has 183 decimal digits.

Crossrefs

Programs

  • Mathematica
    Select[Table[(2n)!/(2(n!)^2)-1, {n, 70}],PrimeQ] (* James C. McMahon, Jun 13 2024 *)
Showing 1-6 of 6 results.