cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A008441 Number of ways of writing n as the sum of 2 triangular numbers.

Original entry on oeis.org

1, 2, 1, 2, 2, 0, 3, 2, 0, 2, 2, 2, 1, 2, 0, 2, 4, 0, 2, 0, 1, 4, 2, 0, 2, 2, 0, 2, 2, 2, 1, 4, 0, 0, 2, 0, 4, 2, 2, 2, 0, 0, 3, 2, 0, 2, 4, 0, 2, 2, 0, 4, 0, 0, 0, 4, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 4, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 2, 2, 0, 6, 0, 2, 2, 0, 0, 2, 2, 0, 1, 4, 2, 2, 4, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). The present sequence gives the expansion coefficients of psi(q)^2.
Also the number of positive odd solutions to equation x^2 + y^2 = 8*n + 2. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 + 3*x^6 + 2*x^7 + 2*x^9 + 2*x^10 + 2*x^11 + ...
G.f. for B(q) = q * A(q^4) = q + 2*q^5 + q^9 + 2*q^13 + 2*q^17 + 3*q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag. See p. 139 Example (iv).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • R. W. Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, in Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Dekker, 1990. See p. 279.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. [See Pi_q.]
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916. See vol. 2, p 31, Article 272.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 165.

Crossrefs

Cf. A004020, A005883, A104794, A052343, A199015 (partial sums).
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A274621 (reciprocal series).

Programs

  • Haskell
    a052343 = (flip div 2) . (+ 1) . a008441
    -- Reinhard Zumkeller, Jul 25 2014
    
  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 420); A[2]; /* Michael Somos, Jan 31 2015 */
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A002654 := proc(n) sigmamr(n,4,1)-sigmamr(n,4,3) ; end proc:
    A008441 := proc(n) A002654(4*n+1) ; end proc:
    seq(A008441(n),n=0..90) ; # R. J. Mathar, Mar 23 2011
  • Mathematica
    Plus@@((-1)^(1/2 (Divisors[4#+1]-1)))& /@ Range[0, 104] (* Ant King, Dec 02 2010 *)
    a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 2, 0, q] EllipticTheta[ 3, 0, q], {q, 0, n + 1/4}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q]^2, {q, 0, 2 n + 1/2}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := If[ n < 0, 0, DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]];  (* Michael Somos, Jun 08 2014 *)
    QP = QPochhammer; s = QP[q^2]^4/QP[q]^2 + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
    TriangleQ[n_] := IntegerQ@Sqrt[8n +1]; Table[Count[FrobeniusSolve[{1, 1}, n], {?TriangleQ}], {n, 0, 104}] (* Robert G. Wilson v, Apr 15 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^(k * (k+1)/2), x * O(x^n))^2, n) )};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv(n, d, (-1)^(d\2)))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 / eta(x + A)^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 14 2005 */
    
  • PARI
    { my(q='q+O('q^166)); Vec(eta(q^2)^4 / eta(q)^2) } \\ Joerg Arndt, Apr 16 2017
    
  • Sage
    ModularForms( Gamma1(8), 1, prec=420).1; # Michael Somos, Jun 08 2014
    

Formula

This sequence is the quadrisection of many sequences. Here are two examples:
a(n) = A002654(4n+1), the difference between the number of divisors of 4*n+1 of form 4*k+1 and the number of form 4*k-1. - David Broadhurst, Oct 20 2002
a(n) = b(4*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Sep 14 2005
G.f.: (Sum_{k>=0} x^((k^2 + k)/2))^2 = (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k in Z} x^(k^2)).
Expansion of Jacobi theta (theta_2(0, sqrt(q)))^2 / (4 * q^(1/4)).
Sum[d|(4n+1), (-1)^((d-1)/2) ].
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 4 * v * w^2 - u^2 * w. - Michael Somos, Sep 14 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1 * u3 - (u2 - u6) * (u2 + 3*u6). - Michael Somos, Sep 14 2005
Expansion of Jacobi k/(4*q^(1/2)) * (2/Pi)* K(k) in powers of q^2. - Michael Somos, Sep 14 2005. Convolution of A001938 and A004018. This appears in the denominator of the Jacobi sn and cn formula given in the Abramowitz-Stegun reference, p. 575, 16.23.1 and 16.23.2, where m=k^2. - Wolfdieter Lang, Jul 05 2016
G.f.: Sum_{k>=0} a(k) * x^(2*k) = Sum_{k>=0} x^k / (1 + x^(2*k + 1)).
G.f.: Sum_{k in Z} x^k / (1 - x^(4*k + 1)). - Michael Somos, Nov 03 2005
Expansion of psi(x)^2 = phi(x) * psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 8 sequence [ 1, -1, -1, 0, 1, 1, -1, 0, ...]. - Michael Somos, Jan 25 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A104794.
Euler transform of period 2 sequence [ 2, -2, ...].
G.f.: q^(-1/4) * eta(q^2)^4 / eta(q)^2. See also the Fine reference.
a(n) = Sum_{k=0..n} A010054(k)*A010054(n-k). - Reinhard Zumkeller, Nov 03 2009
A004020(n) = 2 * a(n). A005883(n) = 4 * a(n).
Convolution square of A010054.
G.f.: Product_{k>0} (1 - x^(2*k))^2 / (1 - x^(2*k-1))^2.
a(2*n) = A113407(n). a(2*n + 1) = A053692(n). a(3*n) = A002175(n). a(3*n + 1) = 2 * A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jun 08 2014
G.f.: exp( Sum_{n>=1} 2*(x^n/n) / (1 + x^n) ). - Paul D. Hanna, Mar 01 2016
a(n) = A001826(2+8*n) - A001842(2+8*n), the difference between the number of divisors 1 (mod 4) and 3 (mod 4) of 2+8*n. See the Ono et al. link, Corollary 1, or directly the Niven et al. reference, p. 165, Corollary (3.23). - Wolfdieter Lang, Jan 11 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 - x^1)^2 / (1 - x^3 + x^2*(1 - x^2)^2 / (1 - x^5 + x^3*(1 - x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
Given g.f. A(x), and B(x) is the g.f. for A079006, then B(x) = A(x^2) / A(x) and B(x) * B(x^2) * B(x^4) * ... = 1 / A(x). - Michael Somos, Apr 20 2017
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
From Paul D. Hanna, Aug 10 2019: (Start)
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) - x^(2*k))^(n-k) = Sum_{n>=0} a(n)*x^(2*n).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) + x^(2*k))^(n-k) * (-1)^k = Sum_{n>=0} a(n)*x^(2*n). (End)
From Peter Bala, Jan 05 2021: (Start)
G.f.: Sum_{n = -oo..oo} x^(4*n^2+2*n) * (1 + x^(4*n+1))/(1 - x^(4*n+1)). See Agarwal, p. 285, equation 6.20 with i = j = 1 and mu = 4.
For prime p of the form 4*k + 3, a(n*p^2 + (p^2 - 1)/4) = a(n).
If n > 0 and p are coprime then a(n*p + (p^2 - 1)/4) = 0. The proofs are similar to those given for the corresponding results for A115110. Cf. A000729.
For prime p of the form 4*k + 1 and for n not congruent to (p - 1)/4 (mod p) we have a(n*p^2 + (p^2 - 1)/4) = 3*a(n) (since b(n), where b(4*n+1) = a(n), is multiplicative). (End)
From Peter Bala, Mar 22 2021: (Start)
G.f. A(q) satisfies:
A(q^2) = Sum_{n = -oo..oo} q^n/(1 - q^(4*n+2)) (set z = q, alpha = q^2, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^(2*n)/(1 - q^(4*n+1)) (set z = q^2, alpha = q, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^n/(1 + q^(2*n+1))^2 = Sum_{n = -oo..oo} q^(3*n+1)/(1 + q^(2*n+1))^2. (End)
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) + 2 * Sum_{n>=1, k>=0} (-1)^k * q^(k*(k+2*n+1)+n). - Mamuka Jibladze, May 17 2021
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) * (1 + q^(2*k+1))/(1 - q^(2*k+1)). - Mamuka Jibladze, Jun 06 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022

Extensions

More terms and information from Michael Somos, Mar 23 2003

A282937 a(n) = A000728(5*n).

Original entry on oeis.org

1, -6, 9, 10, -30, 1, 5, 51, 10, -100, 20, -55, 109, 110, -130, -1, -110, 160, 10, -230, 100, 15, 191, 120, -230, -100, -89, 160, 90, -340, 120, 5, 300, 200, -260, -1, -275, 240, -100, -270, 119, -165, 260, 410, -200, -40, 20, 200, -110, -500, 180, -54, 140
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2017

Keywords

Comments

This generalized function is related to two following identities; R(q^5) - q - q^2/R(q^5) = (q; q){infinity}/(q^25; q^25){infinity}, R^5(q^5) - 11*q^5 - q^10/R^5(q^5) = ((q^5; q^5){infinity}/(q^25; q^25){infinity})^6, where R(q) is the Rogers-Ramanujan continued function and (q; q)_n is the q-Pochhammer symbol. See the reference.

Examples

			G.f.: 1 - 6*q + 9*q^2 + 10*q^3 - 30*q^4 + q^5 + 5*q^6 + 51*q^7 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 185.

Crossrefs

Cf. A000728, A182821 (Product_{n>=1} (1 - q^(5*n))/(1 - q^n)^6), A282941.
Cf. Product_{n>=1} (1 - q^n)^(k+1)/(1 - q^(k*n)): A010815 (k=1), A115110 (k=2), A185654 (k=3), this sequence (k=5), A282942 (k=7).

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^j)^6/(1 - x^(5*j)): j in [1..(m+2)]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    CoefficientList[Series[Product[(1 - x^j)^6/(1 - x^(5*j)), {j,1,62}], {x,0,60}], x] (* G. C. Greubel, Nov 18 2018 *)
  • PARI
    m=60; x='x+O('x^m); Vec(prod(j=1,m+2, (1 - x^j)^6/(1 - x^(5*j)))) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    prec = 60
    x = R.gen().O(prec)
    s = prod((1 - x^j)^6/(1 - x^(5*j)) for j in (1..prec))
    print(s.coefficients()) # G. C. Greubel, Nov 18 2018

Formula

G.f.: Product_{n>=1} (1 - q^n)^6/(1 - q^(5*n)).
a(n) = (-1)^j mod 5 if n = j*(3*j - 1)/2 for all j in Z; otherwise a(n) = 0 mod 5.
Sum_{k=0..n} a(k)*A182821(n-k) = 0 for n > 0. - Seiichi Manyama, Feb 28 2017
G.f.: exp( Sum_{n>=1} -sigma(5*n)*q^n/n ). - Seiichi Manyama, Mar 04 2017
a(n) = -(1/n)*Sum_{k=1..n} sigma(5*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A282942 Expansion of Product_{k>=1} (1 - q^k)^8/(1 - q^(7*k)) in powers of q.

Original entry on oeis.org

1, -8, 20, 0, -70, 64, 56, 1, -133, -140, 308, -70, 174, 56, -518, -141, -63, 868, -140, 238, 294, -1029, -1154, -203, 2366, -658, 1296, 350, -1547, -1295, -1666, 3234, -2128, 2534, 2464, -2577, -3087, -609, 5600, -2716, 2435, 294, -3745, -4249, -1015, 8526
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2017

Keywords

Examples

			G.f.: 1 - 8*q + 20*q^2 - 70*q^4 + 64*q^5 + 56*q^6 + q^7 - 133*q^8 - 140*q^9 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 192.

Crossrefs

Cf. A282941.
Cf. Product_{n>=1} (1 - q^n)^(k+1)/(1 - q^(k*n)): A010815 (k=1), A115110 (k=2), A185654 (k=3), A282937 (k=5), this sequence (k=7).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^j)^8/(1-x^(7*j)): j in [1..m]]) )); // G. C. Greubel, Nov 18 2018
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1-x^k)^8/(1-x^(7*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* G. C. Greubel, Nov 18 2018 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(j=1,m, (1-x^j)^8/(1-x^(7*j)))) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(50)
    s = prod((1-x^j)^8/(1-x^(7*j)) for j in (1..50))
    list(s) # G. C. Greubel, Nov 18 2018

Formula

G.f.: exp( Sum_{n>=1} -sigma(7*n)*q^n/n ). - Seiichi Manyama, Mar 04 2017
a(n) = -(1/n)*Sum_{k=1..n} sigma(7*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A185654 G.f.: exp( Sum_{n>=1} -sigma(3n)*x^n/n ).

Original entry on oeis.org

1, -4, 2, 9, -9, -2, 0, -5, 9, 9, 0, -9, -1, -9, 0, -1, 9, 9, -9, 9, 0, 9, -5, -18, -18, 9, 7, 0, 9, 0, 0, 9, 9, -18, 18, -7, -9, -9, -9, 9, -4, -9, -9, 18, 9, 0, 18, 9, 0, -9, -9, -8, -9, 18, -9, 9, -18, 1, -9, -18, 9, 0, 18, 18, 0, 0, 9, -9, 18, -9, 5, -9, 0, -9, -9, -9, -18, 11, 9
Offset: 0

Views

Author

Paul D. Hanna, Feb 16 2011

Keywords

Examples

			G.f. = 1 - 4*x + 2*x^2 + 9*x^3 - 9*x^4 - 2*x^5 - 5*x^7 + 9*x^8 + ... - _Michael Somos_, Jul 12 2018
		

Crossrefs

Cf. Product_{n>=1} (1 - q^n)^(k+1)/(1 - q^(k*n)): A010815 (k=1), A115110 (k=2), this sequence (k=3), A282937 (k=5), A282942 (k=7).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4 / QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Jul 12 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,-sigma(3*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(eta(X)^4/eta(X^3),n)}

Formula

G.f.: E(x)^4/E(x^3) where E(x) = Product_{n>=1} (1-x^n). [From a formula by Joerg Arndt in A182819]
a(n) = -(1/n)*Sum_{k=1..n} sigma(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
Expansion of E(x) * E(x*w) * E(x/w) in powers of x^3 where w = exp(2 Pi i / 3). - Michael Somos, Jul 12 2018

A283164 Expansion of exp( Sum_{n>=1} -sigma(6*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -12, 58, -133, 95, 194, -418, 97, 325, -99, -238, 169, -217, 131, 190, -145, 441, -647, 169, -527, 72, 1129, 313, -972, 2, -491, -565, 1944, -1175, -216, 972, 863, -1259, 288, 0, -1155, -1355, -207, 2925, 1753, 1402, -2387, -2257, -1030, 315, 432, -72, 1621, 358
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2017

Keywords

Crossrefs

Cf. A224613 (sigma(6*n)), A283119 (exp( Sum_{n>=1} sigma(6*n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), A283163 (k=4), A282937 (k=5), this sequence (k=6), A282942 (k=7), A283168 (k=8), A283169 (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^n)^12 * (1 - x^(6*n))/((1 - x^(2*n))^4 * (1 - x^(3*n))^3).
a(n) = -(1/n)*Sum_{k=1..n} sigma(6*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283168 Expansion of exp( Sum_{n>=1} -sigma(8*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -15, 97, -350, 770, -1133, 1540, -2731, 4230, -3960, 3402, -6580, 9167, -5390, 4310, -11061, 12320, -5306, 2030, -7530, 14784, -4340, -10119, -9240, 20090, 11438, -17275, -4928, 2270, 14080, -26840, 7700, 16646, 24640, -53760, 7449, 10780, 46200, -61600
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2017

Keywords

Crossrefs

Cf. A283120 (exp( Sum_{n>=1} sigma(8*n)*x^n/n )), A283122 (sigma(8*n)).
Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), A283163 (k=4), A282937 (k=5), A283164 (k=6), A282942 (k=7), this sequence (k=8), A283169 (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^n)^15/(1 - x^(2*n))^7.
a(n) = -(1/n)*Sum_{k=1..n} sigma(8*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283169 Expansion of exp( Sum_{n>=1} -sigma(9*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -13, 65, -126, -117, 988, -1377, -1157, 5382, -4419, -4212, 12519, -11179, -5058, 27378, -23005, -16488, 44343, -30249, -18513, 73710, -56259, -38741, 93483, -69570, -23778, 137266, -90396, -74079, 140292, -108621, -39249, 222624, -145710, -99234
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2017

Keywords

Crossrefs

Cf. A283121 (exp( Sum_{n>=1} sigma(9*n)*x^n/n )), A283123 (sigma(9*n)).
Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), A283163 (k=4), A282937 (k=5), A283164 (k=6), A282942 (k=7), A283168 (k=8), this sequence (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^n)^13/(1 - x^(3*n))^4.
a(n) = -(1/n)*Sum_{k=1..n} sigma(9*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A283163 Expansion of exp( Sum_{n>=1} -sigma(4*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -7, 17, -14, 2, -21, 36, 13, -26, -24, 10, 12, -17, 34, 22, 19, -96, -10, 14, 38, 0, 12, -23, 72, -38, -2, -11, -64, -34, 0, 72, 84, -26, 0, 0, -79, 60, 24, -32, -58, -7, -84, 50, 26, 120, 0, 0, 46, -34, -64, 10, -119, 70, 0, 22, -70, 36, 37, -120, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2017

Keywords

Crossrefs

Cf. A182820 (exp( Sum_{n>=1} sigma(4*n)*x^n/n )), A193553 (sigma(4*n)).
Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), this sequence (k=4), A282937 (k=5), A283164 (k=6), A282942 (k=7), A283168 (k=8), A283169 (k=9).

Formula

G.f.: Product_{n>=1} (1 - x^n)^7/(1 - x^(2*n))^3.
a(n) = -(1/n)*Sum_{k=1..n} sigma(4*k)*a(n-k). - Seiichi Manyama, Mar 04 2017

A185653 Expansion of exp( Sum_{n>=1} -3*sigma(2n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -9, 30, -39, 0, 18, 49, 0, -192, 110, 81, 78, -130, 0, -30, -121, 0, 210, 320, -270, 0, -407, 0, 192, 190, 0, 0, 0, 351, -210, -418, 0, -510, 448, 0, 462, 611, 0, -960, 50, 0, 0, -350, 0, 450, -361, -162, 960, 0, 0, 798, -782, 0, -1170, -290, -441, 702, 850, 0, 0, 576
Offset: 0

Views

Author

Paul D. Hanna, Feb 16 2011

Keywords

Comments

When is a(n) zero (A258867)?

Examples

			G.f. = 1 - 9*x + 30*x^2 - 39*x^3 + 18*x^5 + 49*x^6 - 192*x^8 + 110*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,-3*sigma(2*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(eta(X)^9/eta(X^2)^3,n)}

Formula

Expansion of q^(-1/8)*eta(q)^9/eta(q^2)^3 in powers of q; equals the self-convolution cube of A115110 [See formula of Michael Somos for A115110].

A283242 Expansion of exp( Sum_{n>=1} -sigma_2(2*n)*x^n/n ) in powers of x.

Original entry on oeis.org

1, -5, 2, 15, 12, -36, -92, -17, 167, 358, 283, -293, -1321, -2012, -1101, 2299, 7296, 10505, 6901, -7705, -31240, -52490, -51336, -6032, 91521, 217064, 303776, 250595, -36282, -575622, -1234465, -1684515, -1448538, -66980, 2610835, 6087681, 8990575
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2017

Keywords

Crossrefs

Cf. A283224 (exp( Sum_{n>=1} sigma_2(2*n)*x^n/n )).
Cf. exp( Sum_{n>=1} -sigma_k(2*n)*x^n/n ): A115110 (k=1), this sequence (k=2).
Cf. exp( Sum_{n>=1} -sigma_2(m*n)*x^n/n ): A073592 (m=1), this sequence (m=2), A283243 (m=3).

Formula

a(n) = -(1/n)*Sum_{k=1..n} sigma_2(2*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
Showing 1-10 of 11 results. Next