cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A059231 Number of different lattice paths running from (0,0) to (n,0) using steps from S = {(k,k) or (k,-k): k positive integer} that never go below the x-axis.

Original entry on oeis.org

1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, 3768209, 29324405, 231153133, 1841801065, 14810069497, 120029657805, 979470140661, 8040831465825, 66361595715105, 550284185213925, 4582462506008253, 38306388126997785, 321327658068506121, 2703925940081270205
Offset: 0

Views

Author

Wenjin Woan, Jan 20 2001

Keywords

Comments

If y = x*A(x) then 4*y^2 - (1 + 3*x)*y + x = 0 and x = y*(1 - 4*y) / (1 - 3*y). - Michael Somos, Sep 28 2003
a(n) = A059450(n, n). - Michael Somos, Mar 06 2004
The Hankel transform of this sequence is 4^binomial(n+1,2). - Philippe Deléham, Oct 29 2007
a(n) is the number of Schroder paths of semilength n in which there are no (2,0)-steps at level 0 and at a higher level they come in 3 colors. Example: a(2)=5 because we have UDUD, UUDD, UBD, UGD, and URD, where U=(1,1), D=(1,-1), while B, G, and R are, respectively, blue, green, and red (2,0)-steps. - Emeric Deutsch, May 02 2011
Shifts left when INVERT transform applied four times. - Benedict W. J. Irwin, Feb 02 2016

Examples

			a(3) = 29 since the top row of Q^2 = (5, 8, 16, 0, 0, 0, ...), and 5 + 8 + 16 = 29.
		

Crossrefs

Row sums of A086873.
Column k=2 of A227578. - Alois P. Heinz, Jul 17 2013

Programs

  • Maple
    gf := (1+3*x-sqrt(9*x^2-10*x+1))/(8*x): s := series(gf, x, 100): for i from 0 to 50 do printf(`%d,`,coeff(s, x, i)) od:
    A059231_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+4*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A059231_list(20); # Peter Luschny, May 19 2011
  • Mathematica
    Join[{1},Table[-I 3^n/2LegendreP[n,-1,5/3],{n,40}]] (* Harvey P. Dale, Jun 09 2011 *)
    Table[Hypergeometric2F1[-n, 1 - n, 2, 4], {n, 0, 22}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x - sqrt(1 - 10*x + 9*x^2 + x^2 * O(x^n))) / (8*x), n))}; /* Michael Somos, Sep 28 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, n++; polcoeff( serreverse( x * (1 - 4*x) / (1 - 3*x) + x * O(x^n)), n))}; /* Michael Somos, Sep 28 2003 */
    
  • Sage
    # Algorithm of L. Seidel (1877)
    def A059231_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; b = False; h = 1
        for i in range(2*n) :
            if b :
                for k in range(1, h, 1) : D[k] += 2*D[k+1]
            else :
                for k in range(h, 0, -1) : D[k] += 2*D[k-1]
                h += 1
            b = not b
            if b : R.append(D[1])
        return R
    A059231_list(23)  # Peter Luschny, Oct 19 2012

Formula

a(n) = Sum_{k=0..n} 4^k*N(n, k) where N(n, k) = (1/n)*binomial(n, k)*binomial(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 10 2003
a(n) = 3^n/2*LegendreP(n, -1, 5/3). - Vladeta Jovovic, Sep 17 2003
G.f.: (1 + 3*x - sqrt(1 - 10*x + 9*x^2)) / (8*x) = 2 / (1 + 3*x + sqrt(1 - 10*x + 9*x^2)). - Michael Somos, Sep 28 2003
a(n) = Sum_{k=0..n} A088617(n, k)*4^k*(-3)^(n-k). - Philippe Deléham, Jan 21 2004
With offset 1: a(1)=1, a(n) = -3*a(n-1) + 4*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
D-finite with recurrence a(n) = (5(2n-1)a(n-1) - 9(n-2)a(n-2))/(n+1) for n>=2; a(0)=a(1)=1. - Emeric Deutsch, Mar 20 2004
Moment representation: a(n)=(1/(8*Pi))*Int(x^n*sqrt(-x^2+10x-9)/x,x,1,9)+(3/4)*0^n. - Paul Barry, Sep 30 2009
a(n) = upper left term in M^n, M = the production matrix:
1, 1
4, 4, 4
1, 1, 1, 1
4, 4, 4, 4, 4
1, 1, 1, 1, 1, 1
... - Gary W. Adamson, Jul 08 2011
a(n) is the sum of top row terms of Q^(n-1), where Q = the following infinite square production matrix:
1, 4, 0, 0, 0, ...
1, 1, 4, 0, 0, ...
1, 1, 1, 4, 0, ...
1, 1, 1, 1, 4, ...
... - Gary W. Adamson, Aug 23 2011
G.f.: (1+3*x-sqrt(9*x^2-10*x+1))/(8*x)=(1+3*x -G(0))/(4*x) ; G(k)= 1+x*3-x*4/G(k+1); (continued fraction, 1-step ). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ sqrt(2)*3^(2*n+1)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2012
a(n) = A127846(n) for n>0. - Philippe Deléham, Apr 03 2013
0 = a(n)*(+81*a(n+1) - 225*a(n+2) + 36*a(n+3)) + a(n+1)*(+45*a(n+1) + 82*a(n+2) - 25*a(n+3)) + a(n+2)*(+5*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Aug 25 2014
G.f.: 1/(1 - x/(1 - 4*x/(1 - x/(1 - 4*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017

A182122 Expansion of exp( arcsinh( 2*x ) ).

Original entry on oeis.org

1, 2, 2, 0, -2, 0, 4, 0, -10, 0, 28, 0, -84, 0, 264, 0, -858, 0, 2860, 0, -9724, 0, 33592, 0, -117572, 0, 416024, 0, -1485800, 0, 5348880, 0, -19389690, 0, 70715340, 0, -259289580, 0, 955277400, 0, -3534526380, 0, 13128240840, 0, -48932534040, 0, 182965127280
Offset: 0

Views

Author

Michael Somos, Apr 13 2012

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^2 - 2*x^4 + 4*x^6 - 10*x^8 + 28*x^10 - 84*x^12 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Exp(Argsinh(2*x)))); // G. C. Greubel, Aug 12 2018
  • Maple
    s := proc(n) option remember; `if`(n<2, n+1, -4*(n-2)*s(n-2)/(n+1)) end: A127846 := n -> `if`(n<2,n+1,s(n-1)); seq(A127846(n), n=0..47); # Peter Luschny, Sep 23 2014
  • Mathematica
    CoefficientList[Series[Exp[ArcSinh[2x]],{x,0,50}],x] (* Harvey P. Dale, Aug 18 2012 *)
    Table[2 HypergeometricPFQ[{-n+1,2-n},{2},-1],{n,0,46}] (* Peter Luschny, Sep 23 2014 *)
  • PARI
    {a(n) = if( n<2, (n>=0) + (n>0), n = n-2; if( n%2, 0, (-1)^(n/2) * 4 * binomial( n, n/2) / (n + 2)))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sqrt( 1 + 4*x^2 + x*O(x^n) ) + 2*x, n ) )};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = sqrt( 1 + 4*x * A)); polcoeff( A, n))};
    
  • Sage
    def A182122(n):
        if n < 2: return n+1
        if n % 2 == 1: return 0
        return (-1)^(n/2-1)*binomial(n,n/2)/(n-1)
    [A182122(n) for n in range(47)] # Peter Luschny, Sep 23 2014
    

Formula

G.f.: 2*x + sqrt( 1 + 4*x^2 ) = 1 / (1 - 2*x / (1 + x / (1 - x / (1 + x / ... )))).
The g.f. A(x) satisfies: A(x) = sqrt(1 + 4*x * A(x)).
a(n) = (-1)^n * A104624(n). Convolution inverse of A104624.
Conjecture : n*(n+1)*a(n) + (n+2)*(n-1)*a(n-1) +4*(n+1)*(n-3)*a(n-2) +4*(n+2)*(n-4)*a(n-3) = 0.- R. J. Mathar, Jul 24 2012
a(n) = 2*hypergeom([-n+1,2-n],[2],-1). - Peter Luschny, Sep 23 2014
0 = a(n)*(+16*a(n+2) + 10*a(n+4)) + a(n+2)*(-2*a(n+2) + a(n+4)) if n>=0. - Michael Somos, Jan 10 2017
a(n+4) = 2 * a(n+2) * (a(n+2) - 8*a(n)) / (a(n+2) + 10*a(n)) if n>=0 is even. - Michael Somos, Jan 10 2017
G.f. A(x) satisfies A(x) = 1/A(-x). - Seiichi Manyama, Jun 20 2025

A386362 Expansion of (1/x) * Series_Reversion( x/(1+7*x+9*x^2) ).

Original entry on oeis.org

1, 7, 58, 532, 5209, 53347, 564499, 6123481, 67732483, 761052565, 8662502212, 99671232514, 1157409133831, 13546774268125, 159649564550746, 1892849564159596, 22562032457415067, 270209749616920813, 3249905798884688038, 39237866746912398292, 475388228365424562019
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2025

Keywords

Crossrefs

Column k=3 of A386408.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+7*x+9*x^2))/x)

Formula

G.f.: 2/(1 - 7*x + sqrt((1-x) * (1-13*x))).
a(n) = (A337167(n+1) - A337167(n))/3.
(n+2)*a(n) = 7*(2*n+1)*a(n-1) - 13*(n-1)*a(n-2) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 9^k * 7^(n-2*k) * binomial(n,2*k) * Catalan(k).
a(n) = Sum_{k=0..n} 3^k * binomial(n,k) * Catalan(k+1).

A386389 Expansion of (1/x) * Series_Reversion( x/(1+9*x+16*x^2) ).

Original entry on oeis.org

1, 9, 97, 1161, 14849, 198729, 2748641, 38977353, 563644673, 8280210825, 123226850913, 1853870946057, 28148395838721, 430791367720905, 6638484468424929, 102918165951351753, 1604104541561284097, 25121009971212463881, 395085505395126968417, 6237523016309454855561
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2025

Keywords

Crossrefs

Column k=4 of A386408.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+9*x+16*x^2))/x)

Formula

G.f.: 2/(1 - 9*x + sqrt((1-x) * (1-17*x))).
a(n) = (A386387(n+1) - A386387(n))/4.
(n+2)*a(n) = 9*(2*n+1)*a(n-1) - 17*(n-1)*a(n-2) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 16^k * 9^(n-2*k) * binomial(n,2*k) * Catalan(k).
a(n) = Sum_{k=0..n} 4^k * binomial(n,k) * Catalan(k+1).

A386408 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * Catalan(j+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 29, 36, 1, 1, 9, 58, 185, 137, 1, 1, 11, 97, 532, 1257, 543, 1, 1, 13, 146, 1161, 5209, 8925, 2219, 1, 1, 15, 205, 2156, 14849, 53347, 65445, 9285, 1, 1, 17, 274, 3601, 34041, 198729, 564499, 491825, 39587, 1
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2025

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,       1,       1,        1, ...
  1,    3,     5,      7,       9,      11,       13, ...
  1,   10,    29,     58,      97,     146,      205, ...
  1,   36,   185,    532,    1161,    2156,     3601, ...
  1,  137,  1257,   5209,   14849,   34041,    67657, ...
  1,  543,  8925,  53347,  198729,  562551,  1330693, ...
  1, 2219, 65445, 564499, 2748641, 9608811, 27053749, ...
		

Crossrefs

Columns k=0..4 give A000012, A002212(n+1), A127846(n+1), A386362, A386389.
Main diagonal gives A386432.

Programs

  • PARI
    a(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*(j+1))!/((j+1)!*(j+2)!));

Formula

G.f. of column k: (1/x) * Series_Reversion( x/(1+(2*k+1)*x+(k*x)^2) ).
G.f. of column k: 2/(1 - (2*k+1)*x + sqrt((1-x) * (1-(4*k+1)*x))).
A(n,k) = (A340968(n+1,k) - A340968(n,k))/k for k > 0.
(n+2)*A(n,k) = (2*k+1)*(2*n+1)*A(n-1,k) - (4*k+1)*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * (2*k+1)^(n-2*j) * binomial(n,2*j) * Catalan(j).

A127847 a(n)=4^C(n,2)*(4^n-1)/3.

Original entry on oeis.org

0, 1, 20, 1344, 348160, 357564416, 1465657589760, 24017731997138944, 1574098141758535761920, 412645105639632468417970176, 432690992231222540584116394393600, 1814838857553600260569028862094736359424, 30447948962887853884238295543591323273401466880
Offset: 0

Views

Author

Paul Barry, Feb 02 2007

Keywords

Comments

-a(n) is the Hankel transform of A127846, the series reversion of x/(1+5x+4x^2). Note that (4^n-1)/3 has g.f. x/(1-5x+4x^2).

Programs

  • Mathematica
    Table[4^Binomial[n,2] (4^n-1)/3,{n,0,20}] (* Harvey P. Dale, Aug 29 2015 *)

Extensions

More terms from Harvey P. Dale, Aug 29 2015
Showing 1-6 of 6 results.