A242153
Number T(n,k) of ascent sequences of length n with exactly k flat steps; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 16, 20, 12, 4, 1, 0, 61, 80, 50, 20, 5, 1, 0, 271, 366, 240, 100, 30, 6, 1, 0, 1372, 1897, 1281, 560, 175, 42, 7, 1, 0, 7795, 10976, 7588, 3416, 1120, 280, 56, 8, 1, 0, 49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0
Offset: 0
Triangle T(n,k) begins:
00: 1;
01: 1, 0;
02: 1, 1, 0;
03: 2, 2, 1, 0;
04: 5, 6, 3, 1, 0;
05: 16, 20, 12, 4, 1, 0;
06: 61, 80, 50, 20, 5, 1, 0;
07: 271, 366, 240, 100, 30, 6, 1, 0;
08: 1372, 1897, 1281, 560, 175, 42, 7, 1, 0;
09: 7795, 10976, 7588, 3416, 1120, 280, 56, 8, 1, 0;
10: 49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0;
...
The 15 ascent sequences of length 4 (dots denote zeros) with their number of flat steps are:
01: [ . . . . ] 3
02: [ . . . 1 ] 2
03: [ . . 1 . ] 1
04: [ . . 1 1 ] 2
05: [ . . 1 2 ] 1
06: [ . 1 . . ] 1
07: [ . 1 . 1 ] 0
08: [ . 1 . 2 ] 0
09: [ . 1 1 . ] 1
10: [ . 1 1 1 ] 2
11: [ . 1 1 2 ] 1
12: [ . 1 2 . ] 0
13: [ . 1 2 1 ] 0
14: [ . 1 2 2 ] 1
15: [ . 1 2 3 ] 0
There are 5 sequences without flat steps, 6 with one flat step, etc., giving row [5, 6, 3, 1, 0] for n=4.
Columns k=0-10 give:
A138265,
A242154,
A242155,
A242156,
A242157,
A242158,
A242159,
A242160,
A242161,
A242162,
A242163.
-
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
`if`(j=i, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
seq(T(n), n=0..12);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == i, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][ b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
A130812
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 6-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
64, 448, 1792, 5376, 13440, 29568, 59136, 109824, 192192, 320320, 512512, 792064, 1188096, 1736448, 2480640, 3472896, 4775232, 6460608, 8614144, 11334400, 14734720, 18944640, 24111360, 30401280, 38001600, 47121984, 57996288, 70884352, 86073856, 103882240
Offset: 6
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810,
A130811. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(2*n,6)+Binomial(n,2)*Binomial(2*n-4,2)- n*Binomial(2*n-2,4)-Binomial(n,3): n in [6..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,6)+binomial(n,2)*binomial(2*n-4,2)-n*binomial(2*n-2,4)-binomial(n,3);
seq(binomial(n,n-6)*2^6,n=6..32); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+5, 6)*2^6, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
CoefficientList[Series[64/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Mar 21 2012 *)
A130811
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3)
seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
A359662
Number of (3-dimensional) cells of regular m-polytopes for m >= 3.
Original entry on oeis.org
1, 5, 8, 15, 16, 24, 35, 40, 70, 80, 120, 126, 160, 210, 240, 330, 495, 560, 600, 715, 1001, 1120, 1365, 1792, 1820, 2016, 2380, 3060, 3360, 3876, 4845, 5280, 5376, 5985, 7315, 7920, 8855, 10626, 11440, 12650, 14950, 15360, 16016, 17550, 20475, 21840, 23751
Offset: 1
8 is a term since the hypersurface of a tesseract consists of 8 (cubical) cells.
A130813
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810,
A130811,
A130812. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
A185342
Triangle of successive recurrences in columns of A117317(n).
Original entry on oeis.org
2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0
Triangle T(n,k),for 1<=k<=n, begins :
2 (1)
4 -4 (2)
6 -12 8 (3)
8 -24 32 -16 (4)
10 -40 80 -80 32 (5)
12 -60 160 -240 192 -64 (6)
14 -84 280 -560 672 -448 128 (7)
16 -112 448 -1120 1792 -1792 1024 -256 (8)
Successive rows can be divided by A171977.
-
Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
-
for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017
A373547
Triangle read by rows: T(n,k) = 4^k*binomial(n+k, n-k) with 0 <= k <= n.
Original entry on oeis.org
1, 1, 4, 1, 12, 16, 1, 24, 80, 64, 1, 40, 240, 448, 256, 1, 60, 560, 1792, 2304, 1024, 1, 84, 1120, 5376, 11520, 11264, 4096, 1, 112, 2016, 13440, 42240, 67584, 53248, 16384, 1, 144, 3360, 29568, 126720, 292864, 372736, 245760, 65536, 1, 180, 5280, 59136, 329472, 1025024, 1863680, 1966080, 1114112, 262144
Offset: 0
The triangle begins as:
1;
1, 4;
1, 12, 16;
1, 24, 80, 64;
1, 40, 240, 448, 256;
1, 60, 560, 1792, 2304, 1024;
1, 84, 1120, 5376, 11520, 11264, 4096;
...
T(2,1) = 12 since there are 12 occurrences of (01)^1 = 01 in (0011)^2 = 00110011: {1, 3}, {1, 4}, {1, 7}, {1, 8}, {2, 3}, {2, 4}, {2, 7}, {2, 8}, {5, 7}, {5, 8}, {6, 7}, {6, 8}.
-
T[n_,k_]:=4^k Binomial[n+k,n-k]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten (* or *)
T[n_,k_]:=SeriesCoefficient[(1-x)/((1-x)^2-4x y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten
A276985
Triangle read by rows: T(n,k) = number of k-dimensional elements in an n-dimensional cross-polytope, n>=1, 0<=k
Original entry on oeis.org
2, 4, 4, 6, 12, 8, 8, 24, 32, 16, 10, 40, 80, 80, 32, 12, 60, 160, 240, 192, 64, 14, 84, 280, 560, 672, 448, 128, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120
Offset: 1
T(4, 1..4) = 8, 24, 32, 16, because the 16-cell has 8 0-faces (vertices), 24 1-faces (edges), 32 2-faces (faces) and 16 3-faces (cells).
Triangle starts
2
4, 4
6, 12, 8
8, 24, 32, 16
10, 40, 80, 80, 32
12, 60, 160, 240, 192, 64
14, 84, 280, 560, 672, 448, 128
16, 112, 448, 1120, 1792, 1792, 1024, 256
18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
- H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486141589.
-
Table[2^(k + 1) Binomial[n, k + 1], {n, 10}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Sep 25 2016 *)
-
T(n, k) = 2^(k+1)*binomial(n, k+1)
trianglerows(n) = for(x=1, n, for(y=0, x-1, print1(T(x, y), ", ")); print(""))
trianglerows(10) \\ print initial 10 rows of triangle
Showing 1-8 of 8 results.
Comments