A122552
a(0)=a(1)=a(2)=1, a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.
Original entry on oeis.org
1, 1, 1, 4, 7, 13, 28, 55, 109, 220, 439, 877, 1756, 3511, 7021, 14044, 28087, 56173, 112348, 224695, 449389, 898780, 1797559, 3595117, 7190236, 14380471, 28760941, 57521884, 115043767, 230087533, 460175068, 920350135, 1840700269, 3681400540
Offset: 0
It is shown in A294627 that there are 42 quaternary sequences (i.e., build from four digits 0, 1, 2, 3) and having both 0 and 3 in every (consecutive) triple. Only a(5=4+1) = 13 of them start with 0: 003x, 030x, 03y0, 0y30, 0330, where x = 0, 1, 2, 3 and y = 1, 2.
-
a:=[1,1,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, Jul 30 2018
-
seq(coeff(series((1-x^2)/(1-x-x^2-2*x^3), x,n+1),x,n),n=0..40); # Muniru A Asiru, Aug 02 2018
-
LinearRecurrence[{1, 1, 2}, {1, 1, 1}, 40]
CoefficientList[ Series[(x^2 - 1)/(2x^3 + x^2 + x - 1), {x, 0, 35}], x] (* Robert G. Wilson v, Jul 30 2018 *)
-
Vec((1-x^2)/(1-x-x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Jan 17 2012
-
from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(1,1,1,1,1,2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
Corrected by
T. D. Noe, Nov 01 2006, Nov 07 2006
Typo in definition corrected by
Paul Curtz, Oct 02 2009
A207607
Triangle of coefficients of polynomials v(n,x) jointly generated with A207606; see Formula section.
Original entry on oeis.org
1, 1, 2, 1, 5, 2, 1, 9, 9, 2, 1, 14, 25, 13, 2, 1, 20, 55, 49, 17, 2, 1, 27, 105, 140, 81, 21, 2, 1, 35, 182, 336, 285, 121, 25, 2, 1, 44, 294, 714, 825, 506, 169, 29, 2, 1, 54, 450, 1386, 2079, 1716, 819, 225, 33, 2, 1, 65, 660, 2508, 4719, 5005, 3185, 1240, 289, 37, 2
Offset: 1
First five rows:
1;
1, 2;
1, 5, 2;
1, 9, 9, 2;
1, 14, 25, 13, 2;
Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, ...) begins:
1;
1, 0;
1, 2, 0;
1, 5, 2, 0;
1, 9, 9, 2, 0;
1, 14, 25, 13, 2, 0;
1, 20, 55, 49, 17, 2, 0;
...
1 = 2*1 - 1, 20 = 2*14 + 1 - 9, 55 = 2*25 + 14 - 9, 49 = 2*13 + 25 - 2, 17 = 2*2 + 1 - 0, 2 = 2*0 + 2 - 0. - _Philippe Deléham_, Mar 03 2012
-
A207607:= (n,k) -> `if`(k=1, 1, binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3) ); seq(seq(A207607(n, k), k = 1..n), n = 1..10); # G. C. Greubel, Mar 15 2020
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207606 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207607 *)
(* Second program *)
Table[If[k==1, 1, Binomial[n+k-3, 2*k-2] + 2*Binomial[n+k-3, 2*k-3]], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else x*u(n - 1, x) + (x + 1)*v(n - 1, x)
def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
-
def T(n, k):
if k == 1: return 1
else: return binomial(n+k-3, 2*k-2) + 2*binomial(n+k-3, 2*k-3)
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 15 2020
A135446
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3), with a(0) = a(1) = -1 and a(2) = 3.
Original entry on oeis.org
-1, -1, 3, 10, 19, 33, 62, 125, 255, 514, 1027, 2049, 4094, 8189, 16383, 32770, 65539, 131073, 262142, 524285, 1048575, 2097154, 4194307, 8388609, 16777214, 33554429, 67108863, 134217730, 268435459, 536870913, 1073741822, 2147483645, 4294967295, 8589934594, 17179869187
Offset: 0
-
a = {-1, -1, 3}; Do[AppendTo[a, 3*a[[ -1]] - 3*a[[ -2]] + 2*a[[ -3]]], {40}]; a (* Stefan Steinerberger, Dec 22 2007 *)
LinearRecurrence[{3, -3, 2},{-1, -1, 3},31] (* Ray Chandler, Sep 23 2015 *)
A140295
a(n) = a(n-1) + a(n-2) + 2a(n-3).
Original entry on oeis.org
1, -2, 4, 4, 4, 16, 28, 52, 112, 220, 436, 880, 1756, 3508, 7024, 14044, 28084, 56176, 112348, 224692, 449392, 898780, 1797556, 3595120, 7190236, 14380468, 28760944, 57521884, 115043764, 230087536, 460175068, 920350132, 1840700272, 3681400540
Offset: 0
A188124
Number of strictly increasing arrangements of 5 nonzero numbers in -(n+3)..(n+3) with sum zero.
Original entry on oeis.org
0, 4, 16, 42, 90, 172, 296, 482, 740, 1092, 1554, 2154, 2906, 3846, 4992, 6382, 8038, 10004, 12302, 14984, 18074, 21626, 25670, 30266, 35442, 41266, 47770, 55024, 63064, 71966, 81766, 92548, 104350, 117258, 131316, 146616, 163200, 181168, 200566
Offset: 0
4*x + 16*x^2 + 42*x^3 + 90*x^4 + 172*x^5 + 296*x^6 + 482*x^7 + 740*x^8 + ...
Some solutions for n=6
.-7...-7...-6...-7...-8...-8...-4...-9...-7...-5...-6...-4...-6...-9...-7...-5
.-5...-5...-4...-6...-6...-2...-3...-5...-5...-4...-3...-3...-3...-5...-4...-3
..1....2....2....2....1...-1...-2....1...-4...-2...-2...-2....1....2...-2....1
..5....3....3....5....4....4....4....5....7....4....4....1....2....5....6....3
..6....7....5....6....9....7....5....8....9....7....7....8....6....7....7....4
-
{a(n) = local(v, c, m); m = n+3; forvec( v = vector( 5, i, [-m, m]), if( 0==prod( k=1, 5, v[k]), next); if( 0==sum( k=1, 5, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
Showing 1-5 of 5 results.
Comments