A160711
Cyclops squares: squares (A000290) that are also cyclops numbers (A134808).
Original entry on oeis.org
0, 11025, 19044, 21025, 24025, 32041, 38025, 42025, 47089, 51076, 58081, 59049, 65025, 66049, 67081, 75076, 87025, 93025, 1110916, 1140624, 1170724, 1190281, 1240996, 1270129, 1290496, 1340964, 1350244, 1380625, 1420864, 1430416
Offset: 1
19044 is in the sequence because it is a square (138^2) and is also a cyclops number (odd number of digits, middle digit is the only zero).
11025 is in the sequence because it is a square (105^2) and is also a cyclops number (odd number of digits, middle digit is the only zero). - _Michael B. Porter_, Jul 09 2016
-
Select[Range[0, 1200]^2, And[OddQ@ Length@ #, #[[Ceiling[Length[#]/2]]] == 0, Count[#, 0] == 1] &@ IntegerDigits@ # &] (* Michael De Vlieger, Jul 08 2016 *)
cnQ[n_]:=Module[{len=IntegerLength[n]},OddQ[len]&&DigitCount[n,10,0]==1 && IntegerDigits[n][[(len+1)/2]]==0]; Join[{0},Select[Range[1200]^2,cnQ]] (* Harvey P. Dale, Mar 19 2018 *)
A160712
Composite cyclops numbers (A134808).
Original entry on oeis.org
102, 104, 105, 106, 108, 201, 202, 203, 204, 205, 206, 207, 208, 209, 301, 302, 303, 304, 305, 306, 308, 309, 402, 403, 404, 405, 406, 407, 408, 501, 502, 504, 505, 506, 507, 508, 602, 603, 604, 605, 606, 608, 609, 702, 703, 704
Offset: 1
A285845
Powers (A001597) that are also cyclops numbers (A134808).
Original entry on oeis.org
11025, 19044, 21025, 24025, 32041, 38025, 42025, 47089, 51076, 58081, 59049, 65025, 66049, 67081, 74088, 75076, 87025, 93025, 1110916, 1140624, 1170724, 1190281, 1240996, 1270129, 1290496, 1340964, 1350244, 1380625, 1420864, 1430416, 1490841, 1510441
Offset: 1
-
Select[NestList[If[# == 1, 4, Min@ Table[(Floor[#^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ #}]] &, 1, 1400], Function[n, And[OddQ@ Length@ #, #[[ Ceiling[Length[#]/2] ]] == 0, DigitCount[n, 10, 0] == 1] &@ IntegerDigits@ n]] (* Michael De Vlieger, Apr 27 2017, after Robert G. Wilson v at A001597 *)
cyclopsQ[n_Integer, b_: 10] := Module[{digitList = IntegerDigits[n, b], len, pos0s, flag}, len = Length[digitList]; pos0s = Select[Range[len], digitList[[#]] == 0 &]; flag = OddQ[len] && (Length[pos0s] == 1) && (pos0s == {(len + 1)/2}); Return[flag]]; (* from Alonso del Arte in A134808 *) min = 0; max = 1520000; t = Union@ Flatten@ Table[n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}]; Select[t, cyclopsQ] (* Robert G. Wilson v, Apr 27 2017 *)
-
is_cyclops(k) = {
if(k==0, return(1));
my(d=digits(k), j);
if(#d%2==0 || d[#d\2+1]!=0, return(0));
for(j=1, #d\2, if(d[j]==0, return(0)));
for(j=#d\2+2, #d, if(d[j]==0, return(0)));
return(1)}
L=List(); for(n=1, 100000, if(ispower(n) && is_cyclops(n), listput(L, n))); Vec(L)
A286662
Numbers k such that k, k^2 and k^3 are cyclops numbers (A134808).
Original entry on oeis.org
0, 16075, 18039, 1130239, 1130363, 1130668, 1150474, 1220156, 1230423, 1250928, 1290628, 1330162, 1350478, 1390313, 1390989, 1510414, 1510712, 1530314, 1530461, 1530585, 1540896, 1540977, 1560186, 1560324, 1570341, 1580342, 1620244, 1620389, 1630871, 1650288
Offset: 1
16075 is in the sequence because k^2 = 258405625, k^3 = 4153870421875 and these three numbers are cyclops numbers.
Cf.
A000290,
A000578,
A134808,
A160711,
A239587,
A239588,
A239589,
A239590,
A239591,
A239827,
A239828.
-
cycQ[n_]:=DigitCount[n,10,0]==1&&OddQ[IntegerLength[n]]&& IntegerDigits[ n][[(IntegerLength[n]+1)/2]]==0; Join[{0},Table[Select[Range[ 10^n, 10^(n+1)-1],AllTrue[{#,#^2,#^3},cycQ]&],{n,2,6,2}]]//Flatten (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 25 2017 *)
-
is_cyclops(k) = {
if(k==0, return(1));
my(d=digits(k), j);
if(#d%2==0 || d[#d\2+1]!=0, return(0));
for(j=1, #d\2, if(d[j]==0, return(0)));
for(j=#d\2+2, #d, if(d[j]==0, return(0)));
return(1)}
L=List(); for(n=0, 10000000, if(is_cyclops(n) && is_cyclops(n^2) && is_cyclops(n^3), listput(L, n))); Vec(L)
A357033
a(n) is the smallest number that has exactly n divisors that are cyclops numbers (A134808).
Original entry on oeis.org
1, 101, 202, 404, 606, 1212, 2424, 7272, 21816, 41208, 84048, 123624, 144144, 336336, 288288, 504504, 432432, 865368, 864864, 1009008, 2378376, 1729728, 3459456, 3027024, 4756752, 6054048, 9081072, 11099088, 12108096, 16648632, 23207184, 29405376, 36324288
Offset: 0
The divisors of 101 are 1 and 101. Of those, only 101 is a cyclops number; it is the smallest cyclops number, so a(1) = 101.
The divisors of 202 are 1, 2, 101, and 202, the cyclops numbers being 101 and 202, so a(2) = 202.
The divisors of 404 are 1, 2, 4, 101, 202, and 404, the cyclops numbers being 101, 202 and 404, so a(3) = 404.
-
ints:=func; cyc:=func; a:=[]; for n in [0..32] do k:=1; while #[s:s in Divisors(k)| cyc(s)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
-
L:= Vector(10^8):
C:= [0]:
for d from 3 to 7 by 2 do
C:= [seq(seq(seq(a*10^(d-1)+10*b+c,c=1..9),b=C),a=1..9)];
for x in C do
Mx:= [seq(i,i=x..10^8,x)];
L[Mx]:= map(`+`,L[Mx],1)
od;
od:
V:= Array(0..max(L)):
for n from 1 to 10^8 do
if V[L[n]] = 0 then V[L[n]]:= n; fi
od:
if member(0,V,'k') then convert(V[0..k-1],list)
else convert(V,list)
fi; # Robert Israel, Sep 20 2022
-
cyclopQ[n_] := Module[{d = IntegerDigits[n], len}, OddQ[len = Length[d]] && Position[d, 0] == {{(len + 1)/2}}]; f[n_] := DivisorSum[n, 1 &, cyclopQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[10, 10^5] (* Amiram Eldar, Sep 26 2022 *)
A138148
Cyclops numbers with binary digits only.
Original entry on oeis.org
0, 101, 11011, 1110111, 111101111, 11111011111, 1111110111111, 111111101111111, 11111111011111111, 1111111110111111111, 111111111101111111111, 11111111111011111111111, 1111111111110111111111111, 111111111111101111111111111, 11111111111111011111111111111
Offset: 0
n ........ a(n) .... A129868(n): value of a(n) read in base 2.
0 ......... 0 ......... 0
1 ........ 101 ........ 5
2 ....... 11011 ....... 27
3 ...... 1110111 ...... 119
4 ..... 111101111 ..... 495
5 .... 11111011111 .... 2015
6 ... 1111110111111 ... 8127
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 9, 14.
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, video (2015).
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
-
[(-1 - 9*10^n + 10^(1 + 2*n))/9 : n in [0..15]]; // Wesley Ivan Hurt, Dec 08 2015
-
A138148:=n->(-1-9*10^n+10^(1+2*n))/9: seq(A138148(n), n=0..15); # Wesley Ivan Hurt, Dec 08 2015
-
Table[(-1 - 9*10^n + 10^(1 + 2*n))/9, {n, 0, 15}] (* Wesley Ivan Hurt, Dec 08 2015 *)
-
for(n=1, 20, if(n%2==1, c=((10^n-1)/9)-10^((n-1)/2); print1(c, ", "))) \\ Felix Fröhlich, Jul 07 2014
-
apply( {A138148(n)=10^(n*2+1)\9-10^n}, [0..15]) \\ M. F. Hasler, Feb 08 2020
A134809
Cyclops primes.
Original entry on oeis.org
101, 103, 107, 109, 307, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 13033, 13037, 13043, 13049, 13063
Offset: 1
-
(* First run the program given for A134808 *) Select[Prime[Range[2000]], cyclopsQ] (* Alonso del Arte, Dec 16 2010 *)
cycQ[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn];OddQ[len] && Count[idn,0] == 1 && idn[[(len+1)/2]]==0]; Select[Flatten[Table[Prime[ Range[ PrimePi[10^(2n)+1],PrimePi[10^(2n+1)]]],{n,2}]],cycQ] (* Harvey P. Dale, Jun 20 2014 *)
-
# cyclops() in A134808
from sympy import isprime
print([c for c in cyclops(upto=13063) if isprime(c)]) # Michael S. Branicky, Jan 05 2021
A129868
Binary palindromic numbers with only one 0 bit.
Original entry on oeis.org
0, 5, 27, 119, 495, 2015, 8127, 32639, 130815, 523775, 2096127, 8386559, 33550335, 134209535, 536854527, 2147450879, 8589869055, 34359607295, 137438691327, 549755289599, 2199022206975, 8796090925055, 35184367894527, 140737479966719, 562949936644095
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..1630
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 9, 14.
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, video (2015)
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Binary palindromic numbers, including repunits (or Mersenne numbers
A000225) are in
A006995. The sequence of binary pandigital (having both 0's and 1's) palindromic numbers begins 5, 9, 17, 21, 27, 33, 45, 51, 65, 73, ...
-
[2^(2*n+1)-2^n-1: n in [0..25]]; // Vincenzo Librandi, Dec 08 2015
-
A129868:=n->2^(2*n + 1) - 2^n - 1: seq(A129868(n), n=0..30); # Wesley Ivan Hurt, Dec 08 2015
-
(* 1st *) FromDigits[ #,2]&/@NestList[Append[Prepend[ #, 1], 1]&, {0}, 25] (* 2nd *) NestList[(1/2)(7 + 8# + Sqrt[9 + 8# ])&, 0, 22] (* both of these are from Zak Seidov *)
f[n_] := 2^(2n + 1) - 2^n - 1; Table[f@n, {n, 0, 22}] (* Robert G. Wilson v, Aug 24 2007 *)
Table[EulerE[2, 2^n], {n, 1, 60}]/2 - 1 (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
(* After running the program in A134808 *) Select[Range[0, 2^16 - 1], cyclopsQ[#, 2] &] (* Alonso del Arte, Dec 17 2010 *)
LinearRecurrence[{7, -14, 8}, {0, 5, 27}, 30] (* Vincenzo Librandi, Dec 08 2015 *)
-
concat(0, Vec(x*(5-8*x)/(1-7*x+14*x^2-8*x^3) + O(x^100))) \\ Altug Alkan, Dec 08 2015
-
def A129868(n): return ((m:=1<Chai Wah Wu, Mar 19 2024
A262259
Numbers k such that the symmetric representation of sigma(k) has only two parts and they meet at the center of the Dyck path.
Original entry on oeis.org
3, 10, 78, 136, 666, 820, 1830, 2628, 4656, 5886, 6328, 16290, 18528, 28920, 32896, 39340, 48828, 56616, 62128, 78606, 80200, 83436, 88410, 93528, 100576, 104196, 135460, 146070, 166176, 180300, 187578, 190036
Offset: 1
q = 128 = 2^7 is the 15th term in A174973 for which 2*n+1 = 2^8 + 1 is prime so that a(15) = 2^7 * (2^8 + 1) = 32896. The two parts in the symmetric representation of sigma of a(15) have width 1 and sigma(a(15)) = 2 * a(15) - 2.
q = 308 is the 32nd term in A174973 for which 2*n+1 is prime so that a(32) = 308 * 617 = 190036. The maximum width of the two regions is 2 and sigma(a(32)) = 415296.
For n = 21, the symmetric representation of sigma(21) has two parts that meet at the center of the Dyck path, but 21 is not in the sequence because the symmetric representation of sigma(21) has more than two parts. - _Omar E. Pol_, Sep 18 2015
From _Omar E. Pol_, Oct 05 2015: (Start)
Illustration of initial terms (n = 1, 2):
. y
. |
. |_ _ _ _ _ _
. |_ _ _ _ _ |
. | | |_
. | |_ _|_
. | | |_ _
. | |_ _ |
. | | |
. |_ _ | |
. |_ _|_ | |
. | | | | |
. |_ _|_|_ _ _ _ _ _|_|_ _ x
. 3 10
.
The symmetric representation of sigma(3) = 2 + 2 = 4 has two parts and they meet at the point (2, 2), so a(1) = 3.
The symmetric representation of sigma(10) = 9 + 9 = 18 has two parts and they meet at the point (7, 7), so a(2) = 10.
(End)
Also 10 is in the sequence because the concatenation of the widths of the symmetric representation of sigma(10) is 1111111110111111111 and it is a cyclops number (A134808). - _Omar E. Pol_, Aug 29 2021
Cf.
A000203,
A000217,
A014105,
A071561,
A134808,
A174973,
A191363,
A235791,
A236104,
A237048,
A237270,
A237271,
A237591,
A237593,
A239929,
A245092,
A249351 (widths),
A262045,
A262048,
A262626.
-
(* test for membership in A174973 *)
a174973Q[n_]:=Module[{d=Divisors[n]}, Select[Rest[d] - 2 Most[d], #>0&]=={}]
a174973[n_]:=Select[Range[n], a174973Q]
(* compute numbers in the sequence *)
a262259[n_]:=Map[#(2#+1)&, Select[a174973[1, n], PrimeQ[2#+1]&]]
a262259[308] (* data *)
A138131
Palindromic cyclops numbers.
Original entry on oeis.org
0, 101, 202, 303, 404, 505, 606, 707, 808, 909, 11011, 12021, 13031, 14041, 15051, 16061, 17071, 18081, 19091, 21012, 22022, 23032, 24042, 25052, 26062, 27072, 28082, 29092, 31013, 32023, 33033, 34043, 35053, 36063, 37073, 38083
Offset: 1
101 is a member because 101 is a palindromic number A002113 and also a cyclops number A134808.
-
f:= proc(n,d) local L,m,k;
L:= convert(9^d+n,base,9);
add((1+L[d+1-i])*(10^(i-1)+10^(2*d+1-i)),i=1..d)
end proc:
seq(seq(f(n,d),n=0..9^d-1),d=0..2); # Robert Israel, Feb 18 2018
-
Join[{0},Flatten[Table[Select[Range[10^(2n),10^(2n+1)-1],PalindromeQ[ #] && DigitCount[ #,10,0]==1&&IntegerDigits[#][[(IntegerLength[#]+1)/2]]==0&],{n,2}]]] (* Harvey P. Dale, Dec 03 2022 *)
Showing 1-10 of 41 results.
Comments