cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A003024 Number of acyclic digraphs (or DAGs) with n labeled nodes.

Original entry on oeis.org

1, 1, 3, 25, 543, 29281, 3781503, 1138779265, 783702329343, 1213442454842881, 4175098976430598143, 31603459396418917607425, 521939651343829405020504063, 18676600744432035186664816926721, 1439428141044398334941790719839535103, 237725265553410354992180218286376719253505
Offset: 0

Views

Author

Keywords

Comments

Also the number of n X n real (0,1)-matrices with all eigenvalues positive. - Conjectured by Eric W. Weisstein, Jul 10 2003 and proved by McKay et al. 2003, 2004
Also the number of n X n real (0,1)-matrices with permanent equal to 1, up to permutation of rows/columns, cf. A089482. - Vladeta Jovovic, Oct 28 2009
Also the number of nilpotent elements in the semigroup of binary relations on [n]. - Geoffrey Critzer, May 26 2022
From Gus Wiseman, Jan 01 2024: (Start)
Also the number of sets of n nonempty subsets of {1..n} such that there is a unique way to choose a different element from each. For example, non-isomorphic representatives of the a(3) = 25 set-systems are:
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
These set-systems have ranks A367908, subset of A367906, for multisets A368101.
The version for no ways is A368600, any length A367903, ranks A367907.
The version for at least one way is A368601, any length A367902.
(End)

Examples

			For n = 2 the three (0,1)-matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}}.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 310.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, Eq. (1.6.1).
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P Stanley, Enumerative Combinatorics I, 2nd. ed., p. 322.

Crossrefs

Cf. A086510, A081064 (refined by # arcs), A307049 (by # descents).
Cf. A055165, which counts nonsingular {0, 1} matrices and A085656, which counts positive definite {0, 1} matrices.
Cf. A188457, A135079, A137435 (acyclic 3-multidigraphs), A188490.
For a unique sink we have A003025.
The unlabeled version is A003087.
These are the reverse-alternating sums of rows of A046860.
The weakly connected case is A082402.
A reciprocal version is A334282.
Row sums of A361718.

Programs

  • Maple
    p:=evalf(solve(sum((-1)^n*x^n/(n!*2^(n*(n-1)/2)), n=0..infinity) = 0, x), 50); M:=evalf(sum((-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)), n=1..infinity), 40); # program for evaluation of constants p and M in the asymptotic formula, Vaclav Kotesovec, Dec 09 2013
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[ -(-1)^k * Binomial[n, k] * 2^(k*(n-k)) * a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 13}](* Jean-François Alcover, May 21 2012, after PARI *)
    Table[2^(n*(n-1)/2)*n! * SeriesCoefficient[1/Sum[(-1)^k*x^k/k!/2^(k*(k-1)/2),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 19 2015 *)
    Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,5}] (* Gus Wiseman, Jan 01 2024 *)
  • PARI
    a(n)=if(n<1,n==0,sum(k=1,n,-(-1)^k*binomial(n,k)*2^(k*(n-k))*a(n-k)))
    
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Oct 17 2009

Formula

a(0) = 1; for n > 0, a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*2^(k*(n-k))*a(n-k).
1 = Sum_{n>=0} a(n)*exp(-2^n*x)*x^n/n!. - Vladeta Jovovic, Jun 05 2005
a(n) = Sum_{k=1..n} (-1)^(n-k)*A046860(n,k) = Sum_{k=1..n} (-1)^(n-k)*k!*A058843(n,k). - Vladeta Jovovic, Jun 20 2008
1 = Sum_{n=>0} a(n)*x^n/(1 + 2^n*x)^(n+1). - Paul D. Hanna, Oct 17 2009
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 2^n*x)^(n+m) for m>=1. - Paul D. Hanna, Apr 01 2011
log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 2^n*x)^n. - Paul D. Hanna, Apr 01 2011
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/E(-x) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + x + 3*x^2/(2!*2) + 25*x^3/(3!*2^3) + 543*x^4/(4!*2^6) + ... (Stanley). Cf. A188457. - Peter Bala, Apr 01 2013
a(n) ~ n!*2^(n*(n-1)/2)/(M*p^n), where p = 1.488078545599710294656246... is the root of the equation Sum_{n>=0} (-1)^n*p^n/(n!*2^(n*(n-1)/2)) = 0, and M = Sum_{n>=1} (-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)) = 0.57436237330931147691667... Both references to the article "Acyclic digraphs and eigenvalues of (0,1)-matrices" give the wrong value M=0.474! - Vaclav Kotesovec, Dec 09 2013 [Response from N. J. A. Sloane, Dec 11 2013: The value 0.474 has a typo, it should have been 0.574. The value was taken from Stanley's 1973 paper.]
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 + ... appears to have integer coefficients (cf. A188490). - Peter Bala, Jan 14 2016

A047863 Number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.

Original entry on oeis.org

1, 2, 6, 26, 162, 1442, 18306, 330626, 8488962, 309465602, 16011372546, 1174870185986, 122233833963522, 18023122242478082, 3765668654914699266, 1114515608405262434306, 467221312005126294077442, 277362415313453291571118082, 233150477220213193598856331266
Offset: 0

Views

Author

Keywords

Comments

Row sums of A111636. - Peter Bala, Sep 30 2012
Column 2 of Table 2 in Read. - Peter Bala, Apr 11 2013
It appears that 5 does not divide a(n), that a(n) is even for n>0, that 3 divides a(2n) for n>0, that 7 divides a(6n+5), and that 13 divides a(12n+3). - Ralf Stephan, May 18 2013

Examples

			For n=2, {1,2 black, not connected}, {1,2 white, not connected}, {1 black, 2 white, not connected}, {1 black, 2 white, connected}, {1 white, 2 black, not connected}, {1 white, 2 black, connected}.
G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 162*x^4 + 1442*x^5 + 18306*x^6 + ...
		

References

  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 79, Eq. 3.11.2.

Crossrefs

Column k=2 of A322280.
Cf. A135079 (variant).

Programs

  • Magma
    A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >;
    [A047863(n): n in [0..40]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 09 2012 *)
    nmax = 20; CoefficientList[Series[Sum[E^(2^k*x)*x^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 05 2019 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp(2^k*x +x*O(x^n))*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Mar 08 2008
    
  • PARI
    N=66; x='x+O('x^N); egf = sum(n=0, N, exp(2^n*x)*x^n/n!);
    Vec(serlaplace(egf))  \\ Joerg Arndt, May 04 2013
    
  • Python
    from sympy import binomial
    def a(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
    
  • SageMath
    def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1))
    [A047863(n) for n in range(41)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(k*(n-k)).
a(n) = 4 * A000683(n) + 2. - Vladeta Jovovic, Feb 02 2000
E.g.f.: Sum_{n>=0} exp(2^n*x)*x^n/n!. - Paul D. Hanna, Nov 27 2007
O.g.f.: Sum_{n>=0} x^n/(1 - 2^n*x)^(n+1). - Paul D. Hanna, Mar 08 2008
From Peter Bala, Apr 11 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function is E(x)^2 = 1 + 2*x + 6*x^2/(2!*2) + 26*x^3/(3!*2^3) + .... In general, E(x)^k, k = 1, 2, ..., is a generating function for labeled k-colored graphs (see Stanley). For other examples see A191371 (k = 3) and A223887 (k = 4).
If A(x) = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + ... denotes the e.g.f. for this sequence then sqrt(A(x)) = 1 + x + 2*x^2/2! + 7*x^3/3! + ... is the e.g.f. for A047864, which counts labeled 2-colorable graphs. (End)
a(n) ~ c * 2^(n^2/4+n+1/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^(-k^2) = EllipticTheta[3, 0, 1/2] = 2.128936827211877... if n is even and c = Sum_{k = -infinity..infinity} 2^(-(k+1/2)^2) = EllipticTheta[2, 0, 1/2] = 2.12893125051302... if n is odd. - Vaclav Kotesovec, Jun 24 2013

Extensions

Better description from Christian G. Bower, Dec 15 1999

A188457 G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1 + 3^n*x)^(n+1).

Original entry on oeis.org

1, 1, 5, 109, 9449, 3068281, 3586048685, 14668583277349, 205716978569685329, 9737002299093315531121, 1536239893108209683958428885, 799846636937376803320381186364509, 1362900713950636674946135205457794784569
Offset: 0

Views

Author

Paul D. Hanna, Mar 31 2011

Keywords

Comments

G.f. satisfies a variant of an identity involving A003024:
1 = Sum_{n>=0} A003024(n)*x^n/(1 + 2^n*x)^(n+1),
where A003024(n) is the number of acyclic digraphs with n labeled nodes.
a(n) is the number of acyclic 2-multidigraphs. Cf. A137435, A339768. - Geoffrey Critzer, Feb 21 2021

Examples

			Illustration of the generating functions.
E.g.f.: 1 = exp(-x) + exp(-3*x)*x + 5*exp(-9*x)*x^2/2! + 109*exp(-27*x)*x^3/3! +...
L.g.f.: log(1+x) = x/(1+3*x) + 5*(x^2/2)/(1+9*x)^2 + 109*(x^3/3)/(1+27*x)^3 +...
G.f.: 1 = 1/(1+x) + 1*x/(1+3*x)^2 + 5*x^2/(1+9*x)^3 + 109*x^3/(1+27*x)^4 +...
G.f.: 1 = 1/(1+x)^2 + 1*2*x/(1+3*x)^3 + 5*3*x^2/(1+9*x)^4 + 109*4*x^3/(1+27*x)^5 +...
G.f.: 1 = 1/(1+x)^3 + 1*3*x/(1+3*x)^4 + 5*6*x^2/(1+9*x)^5 + 109*10*x^3/(1+27*x)^6 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[-(-1)^k Binomial[n, k] 3^(k(n-k)) a[n-k], {k, 1, n}]];
    a /@ Range[0, 12] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+3^k*x+x*O(x^n))^(k+1)), n)}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    /* Holds for m>=1: */
    {a(n)=local(m=1);polcoeff(1-sum(k=0, n-1, a(k)*binomial(m+k-1,k)*x^k/(1+3^k*x+x*O(x^n))^(k+m)), n)/binomial(m+n-1,n)}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    /* Recurrence: */
    {a(n)=if(n<1, n==0, sum(k=1, n, -(-1)^k*binomial(n, k)*3^(k*(n-k))*a(n-k)))}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    /* E.g.f.: */
    {a(n)=n!*polcoeff(1-sum(k=0, n-1, a(k)*exp(-3^k*x+x*O(x^n))*x^k/k!), n)}
    for(n=0,20, print1(a(n),", "))

Formula

G.f.: 1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 3^n*x)^(n+m) for m>=1.
L.g.f.: log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 3^n*x)^n.
E.g.f.: 1 = Sum_{n>=0} a(n)*exp(-3^n*x)*x^n/n!.
a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*3^(k*(n-k))*a(n-k) for n>0 with a(0)=1.
From Peter Bala, Apr 01 2013: (Start)
Let E(x) = sum {n >= 0} x^n/(n!*3^C(n,2)). Then a generating function for this sequence is 1/E(-x) = sum {n >= 0} a(n)*x^n/(n!*3^C(n,2)) = 1 + x + 5*x^2/(2!*3) + 109*x^3/(3!*3^3) + 9449*x^4/(4!*3^6) + .... (End)
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 39*x^3 + 2403*x^4 + 616131*x^5 + ... appears to have integer coefficients. - Peter Bala, Jan 14 2016

A244755 a(n) = Sum_{k=0..n} C(n,k) * (1 + 3^k)^(n-k).

Original entry on oeis.org

1, 3, 13, 87, 985, 19563, 697573, 44195007, 4985202865, 987432857043, 344306650353853, 209169206074748967, 222262777197258910345, 409907753371580011362363, 1317924525238880964004945813, 7341603216747343890845790989967, 71176841502529490992224798115792225
Offset: 0

Views

Author

Paul D. Hanna, Jul 05 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 3*x + 13*x^2/2! + 87*x^3/3! + 985*x^4/4! + 19563*x^5/5! +...
ILLUSTRATION OF INITIAL TERMS:
a(1) = (1+3^0)^1 + (1+3^1)^0 = 3;
a(2) = (1+3^0)^2 + 2*(1+3^1)^1 + (1+3^2)^0 = 13;
a(3) = (1+3^0)^3 + 3*(1+3^1)^2 + 3*(1+3^2)^1 + (1+3^3)^0 = 87;
a(4) = (1+3^0)^4 + 4*(1+3^1)^3 + 6*(1+3^2)^2 + 4*(1+3^3)^1 + (1+3^4)^0 = 985; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * (1 + 3^k)^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 25 2015 *)
  • PARI
    {a(n) = sum(k=0,n,binomial(n,k) * (1 + 3^k)^(n-k) )}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* E.g.f. Sum_{n>=0} exp((1+3^n)*x)*x^n/n!" */
    {a(n)=n!*polcoeff(sum(k=0, n, exp((1+3^k)*x +x*O(x^n))*x^k/k!), n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* O.g.f. Sum_{n>=0} x^n/(1 - (1+3^n)*x)^(n+1): */
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-(1+3^k)*x +x*O(x^n))^(k+1)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} exp((1+3^n)*x) * x^n/n!.
O.g.f.: Sum_{n>=0} x^n/(1 - (1+3^n)*x)^(n+1).
a(n) ~ c * 3^(n^2/4) * 2^(n+1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/3) = EllipticTheta[3, 0, 1/3] = 1.69145968168171534134842... if n is even, and c = JacobiTheta2(0,1/3) = EllipticTheta[2, 0, 1/3] = 1.69061120307521423305296... if n is odd. - Vaclav Kotesovec, Jan 25 2015

A193198 G.f.: A(x) = Sum_{n>=0} x^n/(1 - 3^n*x)^n.

Original entry on oeis.org

1, 1, 4, 28, 352, 7696, 296704, 19845568, 2325071872, 472050401536, 167325747134464, 102717666720160768, 109887628080679616512, 203517277347030338768896, 656102983404750860283019264, 3660938644168893995628877692928
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 352*x^4 + 7696*x^5 +...
where:
A(x) = 1 + x/(1-3*x) + x^2/(1-9*x)^2 + x^3/(1-27*x)^3 + x^4/(1-81*x)^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1);A=1+sum(m=1,n,x^m/(1-3^m*x +x*O(x^n))^m);polcoeff(A,n)}
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*3^(k*(n-k))))}

Formula

a(n) = Sum_{k=0..n-1} binomial(n-1,k)*3^(k*(n-k)) for n>0 with a(0)=1.

A320287 a(n) = n! * [x^n] Sum_{k>=0} exp(n^k*x)*x^k/k!.

Original entry on oeis.org

1, 2, 6, 56, 2050, 318752, 252035714, 980755711616, 23647746367946754, 3088949241542073508352, 2940240000900000020000000002, 16218429504693724464229916894517248, 748528620411995327278028288988088683724802, 210422023062476527874650307058798916093350502080512
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 09 2018

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n,k)*n^(k*(n-k)):k in [0..n]]): n in [0..20]]; // G. C. Greubel, Nov 04 2018
  • Mathematica
    Join[{1}, Table[n! SeriesCoefficient[Sum[Exp[n^k x] x^k/k!, {k, 0, n}], {x, 0, n}], {n, 13}]]
    Join[{1}, Table[SeriesCoefficient[Sum[x^k/(1 - n^k x)^(k + 1), {k, 0, n}], {x, 0, n}], {n, 13}]]
    Join[{1}, Table[Sum[Binomial[n, k] n^(k (n - k)), {k, 0, n}], {n, 13}]]
  • PARI
    for(n=0,20, print1(sum(k=0,n, binomial(n,k)*n^(k*(n-k))), ", ")) \\ G. C. Greubel, Nov 04 2018
    

Formula

a(n) = [x^n] Sum_{k>=0} x^k/(1 - n^k*x)^(k+1).
a(n) = Sum_{k=0..n} binomial(n,k)*n^(k*(n-k)).
a(n) ~ 2^(n + 1/2) * n^(n^2/4 - 1/2) / sqrt(Pi) if n is even and a(n) ~ 2^(n + 3/2) * n^(n^2/4 - 3/4) / sqrt(Pi) if n is odd. - Vaclav Kotesovec, Jul 06 2022

A360933 Expansion of e.g.f. Sum_{k>=0} exp((3^k - 1)*x) * x^k/k!.

Original entry on oeis.org

1, 1, 5, 37, 521, 12361, 510605, 35837677, 4348414481, 903630399121, 325415100648725, 201805338104622517, 217331913727442676761, 404193405278758441895641, 1306527408146744068362681245, 7302236837745565755664036677757
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp((3^k-1)*x)*x^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(3^k-1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (3^k-1)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k/(1 - (3^k - 1)*x)^(k+1).
a(n) = Sum_{k=0..n} (3^k - 1)^(n-k) * binomial(n,k).

A135078 E.g.f. A(x) = 1 + Sum_{n>=1} (1/n!)*Product_{k=0..n-1} [exp(3^k*x) - 1].

Original entry on oeis.org

1, 1, 4, 46, 1519, 145795, 41134753, 34354750885, 85260288495316, 630102185300832652, 13884412839047621240875, 912975607895806507921828357, 179255108346123463104458490745825
Offset: 0

Views

Author

Paul D. Hanna, Nov 24 2007

Keywords

Examples

			A(x) = 1 + x + 4x^2/2! + 46x^3/3! + 1519x^4/4! + 145795x^5/5! +...;
A(x) = 1 + [exp(x)-1] + [exp(x)-1][exp(3x)-1]/2! + [exp(x)-1][exp(3x)-1][exp(9x)-1]/3! + [exp(x)-1][exp(3x)-1][exp(9x)-1][exp(27x)-1]/4! +...
		

Crossrefs

Cf. variants: A135077, A135079.

Programs

  • PARI
    {a(n)=n!*polcoeff(1+sum(j=1,n,(1/j!)*prod(k=0,j-1,1*exp(3^k*x)-1)),n)}

A172389 a(n) = Sum_{k=0..n} C(n,k)*3^(k*(n-k))/2^n.

Original entry on oeis.org

1, 1, 2, 7, 44, 481, 9272, 310087, 18164624, 1843946881, 326808099872, 100310221406407, 53656068398769344, 49686835289802328801, 80090696216400251499392, 223445962168511596412895367
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2010

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 44*x^4 + 481*x^5 + 9272*x^6 +...
A(x) = 2/(2-x) + 2*x/(2-3*x)^2 + 2*x^2/(2-3^2*x)^3 + 2*x^3/(2-3^3*x)^4 +...+ 2*x^n/(2-3^n*x)^(n+1) +...
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 44*x^4/4! + 481*x^5/5! +...
E(x) = exp(x/2) + exp(3*x/2)*x/2 + exp(3^2*x/2)*(x/2)^2/2! + exp(3^3*x/2)*(x/2)^3/3! +...+ exp(3^n*x/2)*(x/2)^n/n! +...
		

Crossrefs

Cf. variants: A135079, A047863.

Programs

  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*3^(k*(n-k)))/2^n}
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, exp(3^k*x/2 +x*O(x^n))*(x/2)^k/k!), n)}
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, (x/2)^k/(1-3^k*x/2 +x*O(x^n))^(k+1)), n)}

Formula

O.g.f.: A(x) = Sum_{n>=0} 2*x^n/(2 - 3^n*x)^(n+1).
E.g.f.: E(x) = Sum_{n>=0} exp(3^n*x/2)*(x/2)^n/n!.
a(n) = A135079(n)/2^n.

A355395 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(j*(n-j)) * binomial(n,j).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 6, 8, 2, 1, 2, 8, 26, 16, 2, 1, 2, 10, 56, 162, 32, 2, 1, 2, 12, 98, 704, 1442, 64, 2, 1, 2, 14, 152, 2050, 15392, 18306, 128, 2, 1, 2, 16, 218, 4752, 84482, 593408, 330626, 256, 2, 1, 2, 18, 296, 9506, 318752, 7221250, 39691136, 8488962, 512, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2022

Keywords

Comments

The Stanley reference below describes a family of binomial posets whose elements are two colored graphs with vertices labeled on [n] and with edges labeled on [k-1]. T(n,k) is the number of elements in an n-interval of such a binomial poset. - Geoffrey Critzer, Aug 21 2023

Examples

			Square array begins:
  1,  1,    1,     1,     1,      1, ...
  2,  2,    2,     2,     2,      2, ...
  2,  4,    6,     8,    10,     12, ...
  2,  8,   26,    56,    98,    152, ...
  2, 16,  162,   704,  2050,   4752, ...
  2, 32, 1442, 15392, 84482, 318752, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume 1, Second Edition, Example 3.18.3(e), page 323.

Crossrefs

Columns k=0..4 give A040000, A000079, A047863, A135079, A355440.
Main diagonal gives A320287.
Cf. A009999.

Programs

  • PARI
    T(n, k) = sum(j=0, n, k^(j*(n-j))*binomial(n, j));

Formula

E.g.f. of column k: Sum_{j>=0} exp(k^j * x) * x^j/j!.
G.f. of column k: Sum_{j>=0} x^j/(1 - k^j * x)^(j+1).
For k>=1, E(x)^2 = Sum_{n>=0} T(n,k)*x^n/B_k(n) where B_k(n) = n!*k^binomial(n,2) and E(x) = Sum_{n>=0} x^n/b_k(n). - Geoffrey Critzer, Aug 21 2023
Showing 1-10 of 10 results.