cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A220181 E.g.f.: Sum_{n>=0} (1 - exp(-n*x))^n.

Original entry on oeis.org

1, 1, 7, 115, 3451, 164731, 11467387, 1096832395, 138027417451, 22111390122811, 4393756903239067, 1060590528331645675, 305686632592587314251, 103695663062502304228891, 40895823706632785802087547, 18554695374154504939196298955, 9596336362873294022956267703851
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2012

Keywords

Comments

Compare to the trivial identity: exp(x) = Sum_{n>=0} (1 - exp(-x))^n.
Compare to the e.g.f. of A092552: Sum_{n>=1} (1 - exp(-n*x))^n/n.
From Arvind Ayyer, Oct 25 2020: (Start)
a(n) is also the number of acyclic orientations with unique sink of the complete bipartite graph K_{n,n+1}
a(n) is also the number of toppleable permutations in S_{2n}. A toppleable permutation pi in S_{2n} satisfies pi_i <= n-1+i for 1 <= i <= n+1 and pi_i >= i-n for n+2 <= i <= 2n. (End)
Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1 ...], with an apparent period of 6. Cf. A122399. - Peter Bala, Jun 01 2022

Examples

			O.g.f.: F(x) = 1 + x + 7*x^2 + 115*x^3 + 3451*x^4 + 164731*x^5 +...
where F(x) = 1 + x/(1+x) + 2^2*2!*x^2/((1+2*1*x)*(1+2*2*x)) + 3^3*3!*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 4^4*4!*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) +...
...
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 115*x^3/3! + 3451*x^4/4! + 164731*x^5/5! +...
where the e.g.f. satisfies the identities:
(1) A(x) = 1 + (1-exp(-x)) + (1-exp(-2*x))^2 + (1-exp(-3*x))^3 + (1-exp(-4*x))^4 + (1-exp(-5*x))^5 + (1-exp(-6*x))^6 +...
(2) A(x) = exp(-x) + exp(-2*x)*(1-exp(-2*x)) + exp(-3*x)*(1-exp(-3*x))^2 + exp(-4*x)*(1-exp(-4*x))^3 + exp(-5*x)*(1-exp(-5*x))^4 + exp(-6*x)*(1-exp(-6*x))^5 +...
(3) 2*A(x) = 2 + (1-exp(-2*x)) + (1-exp(-3*x))^2 + (1-exp(-4*x))^3 + (1-exp(-5*x))^4 + (1-exp(-6*x))^5 + (1-exp(-7*x))^6 +...
E.g.f. at offset=1 begins:
B(x) = x + x^2/2! + 7*x^3/3! + 115*x^4/4! + 3451*x^5/5! + 164731*x^6/6! +...
where
B(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2^2 + (1-exp(-3*x))^3/3^2 + (1-exp(-4*x))^4/4^2 + (1-exp(-5*x))^5/5^2 + (1-exp(-6*x))^6/6^2 +...
The series  B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2  may be rewritten as:
B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{n>=2} (n-1)*exp(-2*n*x)/(2*n) -
Sum_{n>=3} C(n-1,2)*exp(-3*n*x)/(3*n) + Sum_{n>=4} C(n-1,3)*exp(-4*n*x)/(4*n) -+...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(-1)^(n-k)*k^n*k!*StirlingS2[n,k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 21 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*m!*x^m/prod(k=1,m,1+m*k*x+x*O(x^n))),n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k*x+x*O(x^n)))^k), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for this sequence with offset=1: */
    {a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k*x+x*O(x^n)))^k/k^2), n)}
    for(n=1, 21, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = sum(k=0,n,(-1)^(n-k)*k^n*k!*Stirling2(n, k))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = if(n==0,1,sum(k=1,n+1,((k-1)!)^2*Stirling2(n+1,k)^2/2))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0,n, k^n*sum(j=0,k, (-1)^(n+k-j)*binomial(k,j)*(k-j)^n))}
    for(n=0, 20, print1(a(n), ", "))

Formula

O.g.f. Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 + n*k*x).
E.g.f. A(x) = Sum_{n>=0} (1 - exp(-n*x))^n satisfies the identities:
(1) A(x) = Sum_{n>=1} exp(-n*x) * (1 - exp(-n*x))^(n-1).
(2) A(x) = 1 + (1/2) * Sum_{n>=1} (1 - exp(-n*x))^(n-1).
(3) A(x) = Sum_{n>=1} Sum_{k>=0} (-1)^k * C(n+k-1,k) * exp(-k*(n+k-1)*x).
E.g.f. at offset 1, B(x) = Sum_{n>=1} a(n-1)*x^n/n!, satisfies:
(1) B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2.
(2) B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{k>=2} Sum_{n>=k} (-1)^k * C(n-1,k-1) * exp(-k*n*x)/(k*n), a convergent series for x>0.
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^n * k! * Stirling2(n,k).
a(n) = Sum_{k=1..n+1} ((k-1)!)^2 * Stirling2(n+1,k)^2 / 2 for n>0 with a(0)=1.
a(n) = Sum_{k=0..n} k^n * Sum_{j=0..k} (-1)^(n+k-j) * binomial(k,j) * (k-j)^n.
a(n) = A048163(n+1)/2 for n>0.
Limit n->infinity (a(n)/n!)^(1/n)/n = 1/(exp(1)*(log(2))^2) = 0.7656928576... - Vaclav Kotesovec, Jun 21 2013
a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, May 13 2014

A329369 Number of permutations of {1,2,...,m} with excedance set constructed by taking m-i (0 < i < m) if b(i-1) = 1 where b(k)b(k-1)...b(1)b(0) (0 <= k < m-1) is the binary expansion of n.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 7, 1, 15, 7, 17, 3, 31, 7, 15, 1, 31, 15, 37, 7, 69, 17, 37, 3, 115, 31, 69, 7, 115, 15, 31, 1, 63, 31, 77, 15, 145, 37, 81, 7, 245, 69, 155, 17, 261, 37, 77, 3, 391, 115, 261, 31, 445, 69, 145, 7, 675, 115, 245, 15, 391, 31, 63, 1, 127, 63
Offset: 0

Views

Author

Mikhail Kurkov, Nov 12 2019

Keywords

Comments

Another version of A152884.
The excedance set of a permutation p of {1,2,...,m} is the set of indices i such that p(i) > i; it is a subset of {1,2,...,m-1}.
Great work on this subject was done by R. Ehrenborg and E. Steingrimsson, so most of the formulas given below are just their results translated into the language of the sequences which are related to the binary expansion of n.
Conjecture 1: equivalently, number of open tours by a biased rook on a specific f(n) X 1 board, which ends on a white cell, where f(n) = A070941(n) = floor(log_2(2n)) + 1 and cells are colored white or black according to the binary representation of 2n. A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves only to the left and otherwise moves only to the right. - Mikhail Kurkov, May 18 2021
Conjecture 2: this sequence is an inverse modulo 2 binomial transform of A284005. - Mikhail Kurkov, Dec 15 2021

Examples

			a(1) = 1 because the 1st excedance set is {m-1} and the permutations of {1,2,...,m} with such excedance set are 21, 132, 1243, 12354 and so on, i.e., for a given m we always have 1 permutation.
a(2) = 3 because the 2nd excedance set is {m-2} and the permutations of {1,2,...,m} with such excedance set are 213, 312, 321, 1324, 1423, 1432, 12435, 12534, 12543 and so on, i.e., for a given m we always have 3 permutations.
a(3) = 1 because the 3rd excedance set is {m-2, m-1} and the permutations of {1,2,...,m} with such excedance set are 231, 1342, 12453 and so on, i.e., for a given m we always have 1 permutation.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember;  2^padic[ordp](n, 2) end:
    a:= proc(n) option remember; `if`(n=0, 1, (h-> a(h)+
         `if`(n::odd, 0, (t-> a(h-t)+a(n-t))(g(h))))(iquo(n, 2)))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 30 2023
  • Mathematica
    a[n_] := a[n] = Which[n == 0, 1, OddQ[n], a[(n-1)/2], True, a[n/2] + a[n/2 - 2^IntegerExponent[n/2, 2]] + a[n - 2^IntegerExponent[n/2, 2]]];
    a /@ Range[0, 65] (* Jean-François Alcover, Feb 13 2020 *)
  • PARI
    upto(n) = my(A, v1); v1 = vector(n+1, i, 0); v1[1] = 1; for(i=1, n, v1[i+1] = v1[i\2+1] + if(i%2, 0, A = 1 << valuation(i/2, 2); v1[i/2-A+1] + v1[i-A+1])); v1 \\ Mikhail Kurkov, Jun 06 2024

Formula

a(2n+1) = a(n) for n >= 0.
a(2n) = a(n) + a(n - 2^f(n)) + a(2n - 2^f(n)) for n > 0 with a(0) = 1 where f(n) = A007814(n) (equivalent to proposition 2.1 at the page 286, see R. Ehrenborg and E. Steingrimsson link).
a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n) = a(2^m*n) + a(2^(m-1)*(2n+1)) + a(2^(m-1)*(4n+1)) for m > 0, n >= 0 (equivalent to proposition 2.5 at the page 287, see R. Ehrenborg and E. Steingrimsson link).
a(2n) = a(2*g(n)) + a(2n - 2^h(n)) + a(2*g(n) + 2^h(n)) for n > 0 with a(0) = 1 where g(n) = A053645(n), h(n) = A063250(n) (equivalent to proposition 2.1 at the page 286, see R. Ehrenborg and E. Steingrimsson link).
a(2n) = 2*a(n + g(n)) + a(2*g(n)) for n > 0, floor(n/3) < 2^(floor(log_2(n))-1) (in other words, for 2^m + k where 0 <= k < 2^(m-1), m > 0) with a(0) = 1 (just a special case of the previous formula, because for 2^m + k where 0 <= k < 2^(m-1), m > 0 we have 2^h(n) = n - g(n)).
a(2n) = a(f(n,-1)) + a(f(n,0)) + a(f(n,1)) for n > 0 with a(0) = 1 where f(n,k) = 2*(f(floor(n/2),k) + n mod 2) + k*A036987(n) for n > 1 with f(1,k) = abs(k) (equivalent to a(2n) = a(2*g(n)) + a(2n - 2^h(n)) + a(2*g(n) + 2^h(n))).
a(n) = Sum_{j=0..2^wt(n) - 1} (-1)^(wt(n) - wt(j)) Product_{k=0..wt(n) - 1} (1 + wt(floor(j/2^k)))^T(n,k) for n > 0 with a(0) = 1 where wt(n) = A000120(n), T(n,k) = T(floor(n/2), k - n mod 2) for k > 0 with T(n,0) = A001511(n) (equivalent to theorem 6.3 at page 296, see R. Ehrenborg and E. Steingrimsson link). Here T(n, k) - 1 for k > 0 is the length of the run of zeros between k-th pair of ones from the right side in the binary expansion of n. Conjecture 1: this formula is equivalent to inverse modulo 2 binomial transform of A284005.
Sum_{k=0..2^n-1} a(k) = (n+1)! for n >= 0.
a((4^n-1)/3) = A110501(n+1) for n >= 0.
a(2^2*(2^n-1)) = A091344(n+1),
a(2^3*(2^n-1)) = A091347(n+1),
a(2^4*(2^n-1)) = A091348(n+1).
More generally, a(2^m*(2^n-1)) = a(2^n*(2^m-1)) = S(n+1,m) for n >= 0, m >= 0 where S(n,m) = Sum_{k=1..n} k!*k^m*Stirling2(n,k)*(-1)^(n-k) (equivalent to proposition 6.5 at the page 297, see R. Ehrenborg and E. Steingrimsson link).
Conjecture 2: a(n) = (1 + A023416(n))*a(g(n)) + Sum_{k=0..floor(log_2(n))-1} (1-R(n,k))*a(g(n) + 2^k*(1 - R(n,k))) for n > 1 with a(0) = 1, a(1) = 1, where g(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2 (at this moment this is the only formula here, which is not related to R. Ehrenborg's and E. Steingrimsson's work and arises from another definition given above, exactly conjectured definition with a biased rook). Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jun 23 2021
From Mikhail Kurkov, Jan 23 2023: (Start)
The formulas below are not related to R. Ehrenborg's and E. Steingrimsson's work.
Conjecture 3: a(n) = A357990(n, 1) for n >= 0.
Conjecture 4: a(2^m*(2k+1)) = Sum_{i=1..wt(k) + 2} i!*i^m*A358612(k, i)*(-1)^(wt(k) - i) for m >= 0, k >= 0 where wt(n) = A000120(n).
Conjecture 5: a(2^m*(2^n - 2^p - 1)) = Sum_{i=1..n} i!*i^m*(-1)^(n - i)*((i - p + 1)*Stirling2(n, i) - Stirling2(n - p, i - p) + Sum_{j=0..p-2} (p - j - 1)*Stirling2(n - p, i - j)/j! Sum_{k=0..j} (i - k)^p*binomial(j, k)*(-1)^k) for n > 2, m >= 0, 0 < p < n - 1. Here we consider that Stirling2(n, k) = 0 for n >= 0, k < 0. (End)
Conjecture 6: a(2^m*n + q) = Sum_{i=A001511(n+1)..A000120(n)+1} A373183(n, i)*a(2^m*(2^(i-1)-1) + q) for n >= 0, m >= 0, q >= 0. Note that this formula is recursive for n != 2^k - 1. Also, it is not related to R. Ehrenborg's and E. Steingrimsson's work. - Mikhail Kurkov, Jun 05 2024
From Mikhail Kurkov, Jul 10 2024: (Start)
a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=1..m+1} a(2^i*k)*(-1)^(m-i+1)*Sum_{j=i..m+1} j^n*Stirling1(j, i)*Stirling2(m+1, j) for m >= 0, n >= 0, k >= 0 with a(0) = 1.
Proof: start with a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n) given above and rewrite it as a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=0..m} binomial(m+1, i) a(2^i*(2^(n-1)*(2k+1) - 1)).
Then conjecture that a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=1..m+1} a(2^i*k)*f(n, m, i). From that it is obvious that f(0, m, i) = [i = (m+1)].
After that use a(2^m*(2^n*(2k+1) - 1)) = Sum_{i=0..m} binomial(m+1, i) Sum_{j=1..i+1} a(2^j*k)*f(n-1, i, j) = Sum_{i=1..m+1} a(2^i*k) Sum_{j=i-1..m} binomial(m+1, j)*f(n-1, j, i). From that it is obvious that f(n, m, i) = Sum_{j=i-1..m} binomial(m+1, j)*f(n-1, j, i).
Finally, all we need is to show that basic conditions and recurrence for f(n, m, i) gives f(n, m, i) = (-1)^(m-i+1)*Sum_{j=i..m+1} j^n*Stirling1(j, i)*Stirling2(m+1, j) (see Max Alekseyev link).
a(2^m*(2k+1)) = a(2^(m-1)*k) + (m+1)*a(2^m*k) + Sum_{i=1..m-1} a(2^m*k + 2^i) for m > 0, k >= 0.
Proof: start with a(2^(m+1)*(2k+1)) = a(2^m*k) + (m+2)*a(2^(m+1)*k) + Sum_{i=1..m} a(2^(m+1)*k + 2^i).
Then use a(2^m*(4k+1)) = a(2^m*k) + (m+1)*a(2^(m+1)*k) + Sum_{i=1..m-1} a(2^(m+1)*k + 2^i).
From that we get a(2^(m+1)*(2k+1)) - a(2^m*k) - (m+2)*a(2^(m+1)*k) - a(2^(m+1)*k + 2^m) = a(2^m*(4k+1)) - a(2^m*k) - (m+1)*a(2^(m+1)*k).
Finally, a(2^(m+1)*(2k+1)) = a(2^(m+1)*k) + a(2^m*(2*k+1)) + a(2^m*(4k+1)) which agrees with the a(2^m*(2n+1)) = a(2^m*n) + a(2^(m-1)*(2n+1)) + a(2^(m-1)*(4n+1)) given above.
This formula can be considered as an alternative to a(2^m*(2n+1)) = Sum_{k=0..m} binomial(m+1,k) a(2^k*n). There are algorithms for both these formulas that allow you to calculate them without recursion. However, even though it is necessary to calculate binomial coefficients in the mentioned formula, the triple-looped algorithm for it still works faster (see Peter J. Taylor link).
It looks like you can also change v2 in the mentioned algorithm to vector with elements a(2^m*(2^(i+A007814(n+1)-1)-1) + q) to get a(2^m*n + q) instead of a(n). This may have common causes with formula that uses A373183 given above. (End)
From Mikhail Kurkov, Jan 27 2025: (Start)
The formulas below are not related to R. Ehrenborg's and E. Steingrimsson's work.
Conjecture 7: A008292(n+1,k+1) = Sum_{i=0..2^n-1} [A000120(i) = k]*a(i) for n >= 0, k >= 0.
Conjecture 8: a(2^m*(2^n*(2k+1)-1)) = Sum_{i=0..m} Sum_{j=0..m-i} Sum_{q=0..i} binomial(m-i,j)*(m-j+1)^n*a(2^(q+1)*k)*L(m,i,q)*(-1)^j for m >= 0, n > 0, k >= 0 where L(n,k,m) = W(n-m,k-m,m+1) for n > 0, 0 <= k < n, 0 <= m <= k and where W(n,k,m) = (k+m)*W(n-1,k,m) + (n-k)*W(n-1,k-1,m) + [m > 1]*W(n,k,m-1) for 0 <= k < n, m > 0 with W(0,0,m) = 1, W(n,k,m) = 0 for n < 0 or k < 0.
In particular, W(n, k, 1) = A173018(n, k), W(n, k, 2) = A062253(n, k), W(n, k, 3) = A062254(n, k) and W(n, k, 4) = A062255(n, k).
Conjecture 9: a(n) = b(n,wt(n)) for n >= 0 where b(2n+1,k) = b(n,k) + (wt(n)-k+2)*b(n,k-1), b(2n,k) = (wt(n)-k+1)*b(2n+1,k) for n > 0, k > 0 with b(n,0) = A341392(n) for n >= 0, b(0,k) = 0 for k > 0 and where wt(n) = A000120(n) (see A379817).
More generally, a(2^m*(2k+1)) = ((m+1)!)^2*b(k,wt(k)-m) - Sum_{j=1..m} Stirling1(m+2,j+1)*a(2^(j-1)*(2k+1)) for m >= 0, k >= 0. Here we also consider that b(n,k) = 0 for k < 0. (End)
Conjecture 10: if we change b(n,0) = A341392(n) given above to b(n,0) = A341392(n)*x^n, then nonzero terms of the resulting polynomials for b(n,wt(n)) form c(n,k) such that a(n) = Sum_{k=0..A080791(n)} c(n,k) for n >= 0 where c(n,k) = (Product_{i=0..k-1} (1 + 1/A000120(floor(n/2^(A000523(n)-i))))) * Sum_{j=max{0,k-A080791(n)+A080791(A053645(n))}..A080791(A053645(n))} c(A053645(n),j) for n > 0, k >= 0 with c(0,0) = 1, c(0,k) = 0 for k > 0. - Mikhail Kurkov, Jun 19 2025

A092552 Let X_{m,n}(q) be the chromatic polynomial of the complete bipartite graph K_{m,n}. Then a(n) is the negative of the coefficient of the linear term of X_{n,n}(q).

Original entry on oeis.org

0, 1, 3, 31, 675, 25231, 1441923, 116914351, 12764590275, 1805409270031, 321113303226243, 70146437009397871, 18462286083671614275, 5762225835975165678031, 2104263061425865873128963, 888881838896989670838028591, 430058409024841744606172532675
Offset: 0

Views

Author

Michael Lugo (mtlugo(AT)mit.edu), Apr 09 2004

Keywords

Comments

From Arvind Ayyer, Oct 25 2020: (Start)
Equivalently, a(n) is the number of acyclic orientations with a unique sink in K_{n,n}.
a(n) is also the number of toppleable permutations in S_{2n-1}. A toppleable permutation pi in S_{2n-1} satisfies pi_i <= n-1+i for 1 <= i <= n-1 and pi_i >= i-n+1 for n <= i <= 2n-1. The a(3)=3 toppleable permutations in S_3 are 123, 213 and 132. (End)

Examples

			a(2) = 3 since the chromatic polynomial of K_{2,2}(q) is q^4-4*q^3+6*q^2-3*q.
E.g.f.: A(x) = x + 3*x^2/2! + 31*x^3/3! + 675*x^4/4! + 25231*x^5/5! +...
where A(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2 + (1-exp(-3*x))^3/3 +... - _Paul D. Hanna_, Dec 06 2012
O.g.f.: F(x) = x + 3*x^2 + 31*x^3 + 675*x^4 + 25231*x^5 +...
where F(x) = x/(1+x) + 2^1*2!*x^2/((1+2*1*x)*(1+2*2*x)) + 3^2*3!*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 4^3*4!*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) +... - _Paul D. Hanna_, Jan 05 2013
		

Crossrefs

Programs

  • Maple
    a:= n-> -coeff(add(Stirling2(n, k) *mul(q-i, i=0..k-1)
                 *(q-k)^n, k=1..n), q, 1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 30 2012
  • Mathematica
    Table[Sum[k!*(k-1)!*StirlingS2[n,k]^2,{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 21 2013 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=1,n,(1-exp(-k*x+x*O(x^n)))^k/k),n)} \\ Paul D. Hanna, Dec 06 2012
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=if(n<=0, 0, sum(k=1, n, k!*(k-1)! * Stirling2(n, k)^2))} \\ Paul D. Hanna, Dec 30 2012
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n<1,0,polcoeff(sum(m=1, n, m^(m-1)*m!*x^m/prod(k=1, m, 1+m*k*x+x*O(x^n))), n))} \\ Paul D. Hanna, Jan 05 2013

Formula

From Alois P. Heinz, Apr 30 2012: (Start)
a(n) = (-1) * [q] Sum_{j=1..n} (q-j)^n*S2(n,j)*Product_{i=0..j-1} (q-i).
a(n) = (-1) * A212084(n,2n-1). (End)
E.g.f.: Sum_{n>=1} (1 - exp(-n*x))^n / n. - Paul D. Hanna, Dec 06 2012
a(n) = Sum_{k=1..n} k!*(k-1)! * Stirling2(n, k)^2. - Paul D. Hanna, Dec 30 2012, corrected by Vaclav Kotesovec, Jun 21 2013
O.g.f.: Sum_{n>=1} n^(n-1) * n! * x^n / Product_{k=1..n} (1 + n*k*x). - Paul D. Hanna, Jan 05 2013
a(n) = A136126(2*n-1,n), where triangle A136126(n,k) is the number of permutations of {1,2,...,k+n} having excedance set {1,2,...,k}. - Paul D. Hanna, Feb 01 2013
a(n) ~ sqrt(Pi) * n^(2*n-1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n)). - Vaclav Kotesovec, Nov 07 2014
a(n) = A306209(2n-1,n-1) for n > 0. - Alois P. Heinz, Feb 01 2019

A371761 Array read by antidiagonals: The number of parades with n girls and k boys that begin with a girl and end with a boy.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 5, 1, 0, 0, 1, 13, 13, 1, 0, 0, 1, 29, 73, 29, 1, 0, 0, 1, 61, 301, 301, 61, 1, 0, 0, 1, 125, 1081, 2069, 1081, 125, 1, 0, 0, 1, 253, 3613, 11581, 11581, 3613, 253, 1, 0, 0, 1, 509, 11593, 57749, 95401, 57749, 11593, 509, 1, 0
Offset: 0

Views

Author

Peter Luschny, Apr 05 2024

Keywords

Comments

The name derives from a proposition by Donald Knuth, who describes the setup of a "girls and boys parade" as follows: "There are m girls {g_1, ..., g_m} and n boys {b_1, ..., b_n}, where g_i is younger than g_{i+1} and b_j is younger than b_{j+1}, but we know nothing about the relative ages of g_i and b_j. In how many ways can they all line up in a sequence such that no girl is directly preceded by an older girl and no boy is directly preceded by an older boy?" [Our notation: A <- D, n <- m, k <- n].
In A344920, the Worpitzky transform is defined as a sequence-to-sequence transformation WT := A -> B, where B(n) = Sum_{k=0..n} A163626(n, k)*A(k). (If A(n) = 1/(n + 1) then B(n) are the Bernoulli numbers (with B(1) = 1/2.)) The rows of the array are the Worpitzky transforms of the powers up to the sign (-1)^k.
The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the rows of A004248. This makes the array closely linked to A344499, which is generated in the same way, but applied to the columns of A004248.
Conjecture: Row n + 1 is row 2^n in table A136301, where a probabilistic interpretation is given (see the link to Parsonnet's paper below).

Examples

			Array starts:
[0] 1, 0,   0,     0,      0,       0,        0,         0,          0, ...
[1] 0, 1,   1,     1,      1,       1,        1,         1,          1, ...
[2] 0, 1,   5,    13,     29,      61,      125,       253,        509, ...
[3] 0, 1,  13,    73,    301,    1081,     3613,     11593,      36301, ...
[4] 0, 1,  29,   301,   2069,   11581,    57749,    268381,    1191989, ...
[5] 0, 1,  61,  1081,  11581,   95401,   673261,   4306681,   25794781, ...
[6] 0, 1, 125,  3613,  57749,  673261,  6487445,  55213453,  431525429, ...
[7] 0, 1, 253, 11593, 268381, 4306681, 55213453, 610093513, 6077248381, ...
.
Seen as triangle T(n, k) = A(n - k, k):
  [0] 1;
  [1] 0, 0;
  [2] 0, 1,  0;
  [3] 0, 1,  1,   0;
  [4] 0, 1,  5,   1,   0;
  [5] 0, 1, 13,  13,   1,  0;
  [6] 0, 1, 29,  73,  29,  1, 0;
  [7] 0, 1, 61, 301, 301, 61, 1, 0;
.
A(n, k) as sum of powers:
  A(2, k) =  -3+   2*2^k;
  A(3, k) =   7-  12*2^k+    6*3^k;
  A(4, k) = -15+  50*2^k-   60*3^k+   24*4^k;
  A(5, k) =  31- 180*2^k+  390*3^k-  360*4^k+  120*5^k;
  A(6, k) = -63+ 602*2^k- 2100*3^k+ 3360*4^k- 2520*5^k+  720*6^k;
  A(7, k) = 127-1932*2^k+10206*3^k-25200*4^k+31920*5^k-20160*6^k+5040*7^k;
		

Crossrefs

Variant: A272644.
Rows include: A344920 (row 2, signed), A006230 (row 3).
Row sums of triangle (n>=2): A297195, alternating row sums: A226158.
Diagonal of array: A048144.

Programs

  • Maple
    egf := 1/(exp(w) + exp(z) - exp(w + z)): serw := n -> series(egf, w, n + 1):
    # Returns row n (>= 0) with length len (> 0):
    R := n -> len -> local k;
    seq(k!*coeff(series(n!*coeff(serw(n), w, n), z, len), z, k), k = 0..len - 1):
    seq(lprint(R(n)(9)), n = 0..7);
    # Explicit with Stirling2 :
    A := (n, k) -> local j; add(j!^2*Stirling2(n, j)*Stirling2(k, j), j = 0..min(n, k)): seq(lprint(seq(A(n, k), k = 0..8)), n = 0..7);
    # Using the unsigned Worpitzky transform.
    WT := (a, len) -> local n, k;
    seq(add((-1)^(n - k)*k!*Stirling2(n + 1, k + 1)*a(k), k=0..n), n = 0..len-1):
    Arow := n -> WT(x -> x^n, 8): seq(lprint(Arow(n)), n = 0..8);
    # Two recurrences:
    A := proc(n, k) option remember; local j; if k = 0 then return k^n fi;
    add(binomial(n, j)*(A(n-j, k-1) + A(n-j+1, k-1)), j = 1..n) end:
    A := proc(n, k) option remember; local j; if n = 0 then 0^k else
    add(binomial(k + `if`(j=0,0,1), j+1)*A(n-1, k-j), j = 0..k) fi end:
  • Mathematica
    (* Using the unsigned Worpitzky transform. *)
    Unprotect[Power]; Power[0, 0] = 1;
    W[n_, k_] := (-1)^(n - k) k! StirlingS2[n + 1, k + 1];
    WT[a_, len_] := Table[Sum[W[n, k] a[k], {k, 0, n}], {n, 0, len-1}];
    A371761row[n_, len_] := WT[#^n &, len];
    Table[A371761row[n, 9], {n, 0, 8}] // MatrixForm
    (* Row n >= 1 by linear recurrence: *)
    RowByLRec[n_, len_] := LinearRecurrence[Table[-StirlingS1[n+1, n+1-k], {k, 1, n}],
    A371761row[n, n+1], len]; Table[RowByLRec[n, 9], {n, 1, 8}] // MatrixForm
  • Python
    from functools import cache
    from math import comb as binomial
    @cache
    def A(n, k):
        if n == 0: return int(k == 0)
        return sum(binomial(k + int(j > 0), j + 1) * A(n - 1, k - j)
               for j in range(k + 1))
    for n in range(8): print([A(n, k) for k in range(8)])
    
  • Python
    # The Akiyama-Tanigawa algorithm for powers generates the rows.
    def ATPowList(n, len):
        A = [0] * len
        R = [0] * len
        for k in range(len):
            R[k] = k**n   # Changing this to R[k] = (n + 1)**k generates A344499.
            for j in range(k, 0, -1):
                R[j - 1] = j * (R[j] - R[j - 1])
            A[k] = R[0]
        return A
    for n in range(8): print([n], ATPowList(n, 9))
  • SageMath
    def A371761(n, k): return sum((-1)^(j - k) * factorial(j) * stirling_number2(k + 1, j + 1) * j^n for j in range(k + 1))
    for n in range(9): print([A371761(n, k) for k in range(8)])
    

Formula

A(n, k) = k! * [z^k] (n! * [w^n] 1/(exp(w) + exp(z) - exp(w + z))).
A(n, k) = k! * [w^k] (Sum_{j=0..n} A075263(n, n - j) * exp(j*w)).
A(n, k) = Sum_{j=0..k} (-1)^(j-k) * Stirling2(k + 1, j + 1) * j! * j^n.
A(n, k) = Sum_{j=0..min(n,k)} (j!)^2 * Stirling2(n, j) * Stirling2(k, j).
A(n, k) = Sum_{j=0..n} (-1)^(n-j)*A028246(n, j) * j^k; this is explicit:
A(n, k) = Sum_{j=0..n} Sum_{m=0..n} binomial(n-m, n-j) * Eulerian1(n, m) * j^k *(-1)^(n-j), where Eulerian1 = A173018.
A(n, k) = Sum_{j=0..k} binomial(k + [j>0], j+1)*A(n-1, k-j) for n > 0.
A(n, k) = Sum_{j=1..n} binomial(n, j)*(A(n-j, k-1) + A(n-j+1, k-1)) for n,k >= 1.
Row n (>=1) satisfies a linear recurrence:
A(n, k) = -Sum_{j=1..n} Stirling1(n + 1, n + 1 - j)*A(n, k - j) if k > n.
A(n, k) = [x^k] (Sum_{j=0..n} A371762(n, j)*x^j) / (Sum_{j=0..n} Stirling1(n + 1, n + 1 - j)*x^j).
A(n, k) = A(k, n). (From the symmetry of the bivariate exponential g.f.)
Let T(n, k) = A(n - k, k) and G(n) = Sum_{k=0..n} (-1)^k*T(n, k) the alternating row sums of the triangle. Then G(n) = (n + 2)*Euler(n + 1, 1) and as shifted Genocchi numbers G(n) = -2*(n + 2)*PolyLog(-n - 1, -1) = -A226158(n + 2).

A136127 Number of permutations of {1,2,...,n} having excedance set {1,2,...,k} for some k=0...n-1 (for k=0 we have the empty set). The excedance set of a permutation p in S_n is the set of indices i such that p(i)>i.

Original entry on oeis.org

1, 1, 2, 5, 16, 63, 294, 1585, 9692, 66275, 501106, 4150965, 37383528, 363674407, 3800501438, 42460229945, 505029329524, 6371454458859, 84981113118090, 1194793819467325, 17660505018471680, 273788611235722031, 4442085091233531862, 75276072393821203905
Offset: 0

Views

Author

Emeric Deutsch, Jan 17 2008

Keywords

Comments

Row sums of A136126.

Examples

			a(3) = 5 because we have 123, 312, 213, 321 and 231 with excedance sets empty, {1}, {1}, {1} and {1,2}, respectively.
		

Crossrefs

Cf. A136126.

Programs

  • Maple
    a:= proc(n) add(add((-1)^(k+1-i) *factorial(i)*i^(n-1-k)*Stirling2(k+1, i),i=1..k+1),k=0..n) end proc: seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[(-1)^(k+1-i)*i!*i^(n-1-k)*StirlingS2[k+1, i], {k, 0, n}, {i, 1, k+1}];
    Array[a, 30] (* Jean-François Alcover, Mar 29 2017 *)
  • PARI
    a(n)=polcoeff( x*sum(m=0, n, m!*x^m*prod(k=1, m, (2+k*x)/ (1+2*k*x+k^2*x^2 +x*O(x^n))) ), n)
    for(n=1, 30, print1(a(n), ", "))\\ Paul D. Hanna, Feb 01 2013

Formula

a(n) = Sum_{k=0..n} Sum_{i=1..k+1} (-1)^(k+1-i)*i!*i^(n-1-k) * Stirling2(k+1,i).
G.f.: x*Sum_{n>=0} n! * x^n * Product_{k=1..n} (2 + k*x)/(1 + 2*k*x + k^2*x^2). - Paul D. Hanna, Feb 01 2013
a(n) ~ Pi * n^(n+1) / (exp(n) * 2^(n+1) * (log(2))^(n+3/2)). - Vaclav Kotesovec, Sep 11 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A152884 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} with excedance set equal to the k-th subset of {1,2,...,n-1} (n>=0, 0<=k<=ceiling(2^(n-1))-1). The subsets of {1,2,...,n-1} are ordered according to size, while the subsets of the same size follow the lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 3, 1, 7, 3, 1, 1, 1, 15, 7, 3, 1, 31, 17, 7, 7, 3, 1, 15, 7, 3, 1, 1, 1, 31, 15, 7, 3, 1, 115, 69, 37, 15, 31, 17, 7, 7, 3, 1, 115, 69, 31, 37, 17, 7, 15, 7, 3, 1, 31, 15, 7, 3, 1, 1, 1, 63, 31, 15, 7, 3, 1, 391, 245, 145, 77, 31, 115, 69, 37, 15, 31, 17, 7, 7, 3, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 13 2009

Keywords

Comments

For example, the eight subsets of {1,2,3} are ordered as empty,1,2,3,12,13,23,123. The excedance set of a permutation p of {1,2,...,n} is the set of indices i such that p(i)>i; it is a subset of {1,2,...,n-1}.
Row n contains ceiling(2^(n-1)) entries.
Sum of entries in row n is n! (A000142).
The given Maple program yields the term of the sequence corresponding to a specified permutation size n and a specified excedance set A.
All terms are odd. - Alois P. Heinz, Jan 31 2023

Examples

			T(5,3) = 3 because the 3rd subset of {1,2,3,4} is {3} and the permutations of {1,2,3,4,5} with excedance set {3} are 12435, 12534 and 12543.
T(5,4) = 1: 12354 (4th subset of {1,2,3,4} is {4}).
Triangle starts:
      k=0   1  2  3  4   5   6  7  8 ...
  n=0:  1;
  n=1:  1;
  n=2:  1,  1;
  n=3:  1,  3, 1, 1;
  n=4:  1,  7, 3, 1, 7,  3,  1, 1;
  n=5:  1, 15, 7, 3, 1, 31, 17, 7, 7, 3, 1, 15, 7, 3, 1, 1;
  ...
		

Crossrefs

Row sums are A000142.
See A360288, A360289 for similar triangles.
Cf. A000225, A011782, A082185, A136126, A193360, A329369 (another version).

Programs

  • Maple
    n := 7: A := {1, 2, 4}: with(combinat): P := permute(n): EX := proc (p) local S, i: S := {}: for i to n-1 do if i < p[i] then S := `union`(S, {i}) else end if end do: S end proc: ct := 0: for j to factorial(n) do if EX(P[j]) = A then ct := ct+1 else end if end do: ct;
    # second Maple program:
    T:= proc(n) option remember; uses combinat; local b, i, l;
          l:= map(x-> {x[]}, [seq(choose([$1..n-1], i)[], i=0..n-1)]):
          for i to nops(l) do h(l[i]):=i od:
          b:= proc(s, l) option remember; (m->
               `if`(m=0, x^h(l), add(b(s minus {i}, {l[],
               `if`(i
          seq(coeff(p, x, i), i=1..degree(p)))(b({$1..n}, {}))
        end: T(0):=1:
    seq(T(n), n=0..8);  # Alois P. Heinz, Jan 29 2023

Formula

T(n,k) = A000225(n-k) = 2^(n-k) - 1 for n>k>0. - Alexander R. Povolotsky, May 14 2025

Extensions

T(0,0)=1 prepended and indexing adapted by Alois P. Heinz, Jan 29 2023

A382673 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^3.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 22, 52, 22, 1, 1, 46, 208, 208, 46, 1, 1, 94, 736, 1372, 736, 94, 1, 1, 190, 2440, 7516, 7516, 2440, 190, 1, 1, 382, 7792, 37012, 60316, 37012, 7792, 382, 1, 1, 766, 24328, 170668, 418996, 418996, 170668, 24328, 766, 1, 1, 1534, 74896, 754132, 2653036, 3964684, 2653036, 754132, 74896, 1534, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2025

Keywords

Examples

			Square array begins:
  1,  1,    1,     1,      1,       1, ...
  1,  4,   10,    22,     46,      94, ...
  1, 10,   52,   208,    736,    2440, ...
  1, 22,  208,  1372,   7516,   37012, ...
  1, 46,  736,  7516,  60316,  418996, ...
  1, 94, 2440, 37012, 418996, 3964684, ...
  ...
		

Crossrefs

Columns k=0..2 give A000012, A033484, A382675.
Main diagonal gives A382676.
Cf. A382735.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2));

Formula

E.g.f.: exp(x+y) / (exp(x) + exp(y) - exp(x+y))^3.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+2,2) * Stirling2(n+1,j+1) * Stirling2(k+1,j+1).

A382734 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (exp(x) + exp(y) - exp(x+y))^2.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 14, 2, 0, 0, 2, 38, 38, 2, 0, 0, 2, 86, 254, 86, 2, 0, 0, 2, 182, 1118, 1118, 182, 2, 0, 0, 2, 374, 4142, 8654, 4142, 374, 2, 0, 0, 2, 758, 14078, 51662, 51662, 14078, 758, 2, 0, 0, 2, 1526, 45614, 267566, 467102, 267566, 45614, 1526, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2025

Keywords

Examples

			Square array begins:
  1, 0,   0,    0,     0,      0, ...
  0, 2,   2,    2,     2,      2, ...
  0, 2,  14,   38,    86,    182, ...
  0, 2,  38,  254,  1118,   4142, ...
  0, 2,  86, 1118,  8654,  51662, ...
  0, 2, 182, 4142, 51662, 467102, ...
		

Crossrefs

Main diagonal gives A382737.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*stirling(n, j, 2)*stirling(k, j, 2));

Formula

E.g.f.: 1 / (exp(x) + exp(y) - exp(x+y))^2.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} j! * (j+1)! * Stirling2(n,j) * Stirling2(k,j).

A382674 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 77, 29, 1, 1, 61, 325, 325, 61, 1, 1, 125, 1181, 2357, 1181, 125, 1, 1, 253, 3973, 13621, 13621, 3973, 253, 1, 1, 509, 12797, 69269, 118061, 69269, 12797, 509, 1, 1, 1021, 40165, 326005, 862261, 862261, 326005, 40165, 1021, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2025

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,      1,       1, ...
  1,   5,   13,    29,     61,     125, ...
  1,  13,   77,   325,   1181,    3973, ...
  1,  29,  325,  2357,  13621,   69269, ...
  1,  61, 1181, 13621, 118061,  862261, ...
  1, 125, 3973, 69269, 862261, 8712245, ...
  ...
		

Crossrefs

Columns k=0..2 give A000012, A036563(n+2), A382677.
Main diagonal gives A382678.
Cf. A382736.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+3, 3)*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2));

Formula

E.g.f.: exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+3,3) * Stirling2(n+1,j+1) * Stirling2(k+1,j+1).

A221971 G.f.: A(x,y) = Sum_{n>=0} n! * x^n*y^n * Product_{k=1..n} (1 + k*x) / (1 + k*x*y + k^2*x^2*y).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 3, 11, 1, 0, 0, 0, 27, 26, 1, 0, 0, 0, 17, 148, 57, 1, 0, 0, 0, 0, 278, 646, 120, 1, 0, 0, 0, 0, 155, 2590, 2481, 247, 1, 0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1, 0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2013

Keywords

Examples

			Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 4, 1;
0, 0, 3, 11, 1;
0, 0, 0, 27, 26, 1;
0, 0, 0, 17, 148, 57, 1;
0, 0, 0, 0, 278, 646, 120, 1;
0, 0, 0, 0, 155, 2590, 2481, 247, 1;
0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1;
0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1;
0, 0, 0, 0, 0, 0, 80712, 614819, 590254, 96648, 2036, 1;
0, 0, 0, 0, 0, 0, 38227, 1665829, 5340996, 2948040, 307255, 4083, 1; ...
		

Crossrefs

Cf. A208237 (row sums), A110501 (central terms), A005439 (column sums), A136126.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(sum(m=0, n,m!*x^m*y^m*prod(k=1, m, (1+k*x)/(1+k*x*y+k^2*x^2*y +x*O(x^n)))),n,x),k,y)}
    for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))

Formula

Row sums equal A208237.
Central terms equal A110501, the Genocchi numbers of first kind (unsigned).
Columns sums equal A005439, the Genocchi numbers of second kind.
Showing 1-10 of 12 results. Next