cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A220181 E.g.f.: Sum_{n>=0} (1 - exp(-n*x))^n.

Original entry on oeis.org

1, 1, 7, 115, 3451, 164731, 11467387, 1096832395, 138027417451, 22111390122811, 4393756903239067, 1060590528331645675, 305686632592587314251, 103695663062502304228891, 40895823706632785802087547, 18554695374154504939196298955, 9596336362873294022956267703851
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2012

Keywords

Comments

Compare to the trivial identity: exp(x) = Sum_{n>=0} (1 - exp(-x))^n.
Compare to the e.g.f. of A092552: Sum_{n>=1} (1 - exp(-n*x))^n/n.
From Arvind Ayyer, Oct 25 2020: (Start)
a(n) is also the number of acyclic orientations with unique sink of the complete bipartite graph K_{n,n+1}
a(n) is also the number of toppleable permutations in S_{2n}. A toppleable permutation pi in S_{2n} satisfies pi_i <= n-1+i for 1 <= i <= n+1 and pi_i >= i-n for n+2 <= i <= 2n. (End)
Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 1 ...], with an apparent period of 6. Cf. A122399. - Peter Bala, Jun 01 2022

Examples

			O.g.f.: F(x) = 1 + x + 7*x^2 + 115*x^3 + 3451*x^4 + 164731*x^5 +...
where F(x) = 1 + x/(1+x) + 2^2*2!*x^2/((1+2*1*x)*(1+2*2*x)) + 3^3*3!*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 4^4*4!*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) +...
...
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 115*x^3/3! + 3451*x^4/4! + 164731*x^5/5! +...
where the e.g.f. satisfies the identities:
(1) A(x) = 1 + (1-exp(-x)) + (1-exp(-2*x))^2 + (1-exp(-3*x))^3 + (1-exp(-4*x))^4 + (1-exp(-5*x))^5 + (1-exp(-6*x))^6 +...
(2) A(x) = exp(-x) + exp(-2*x)*(1-exp(-2*x)) + exp(-3*x)*(1-exp(-3*x))^2 + exp(-4*x)*(1-exp(-4*x))^3 + exp(-5*x)*(1-exp(-5*x))^4 + exp(-6*x)*(1-exp(-6*x))^5 +...
(3) 2*A(x) = 2 + (1-exp(-2*x)) + (1-exp(-3*x))^2 + (1-exp(-4*x))^3 + (1-exp(-5*x))^4 + (1-exp(-6*x))^5 + (1-exp(-7*x))^6 +...
E.g.f. at offset=1 begins:
B(x) = x + x^2/2! + 7*x^3/3! + 115*x^4/4! + 3451*x^5/5! + 164731*x^6/6! +...
where
B(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2^2 + (1-exp(-3*x))^3/3^2 + (1-exp(-4*x))^4/4^2 + (1-exp(-5*x))^5/5^2 + (1-exp(-6*x))^6/6^2 +...
The series  B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2  may be rewritten as:
B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{n>=2} (n-1)*exp(-2*n*x)/(2*n) -
Sum_{n>=3} C(n-1,2)*exp(-3*n*x)/(3*n) + Sum_{n>=4} C(n-1,3)*exp(-4*n*x)/(4*n) -+...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(-1)^(n-k)*k^n*k!*StirlingS2[n,k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 21 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*m!*x^m/prod(k=1,m,1+m*k*x+x*O(x^n))),n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k*x+x*O(x^n)))^k), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for this sequence with offset=1: */
    {a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k*x+x*O(x^n)))^k/k^2), n)}
    for(n=1, 21, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = sum(k=0,n,(-1)^(n-k)*k^n*k!*Stirling2(n, k))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = if(n==0,1,sum(k=1,n+1,((k-1)!)^2*Stirling2(n+1,k)^2/2))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0,n, k^n*sum(j=0,k, (-1)^(n+k-j)*binomial(k,j)*(k-j)^n))}
    for(n=0, 20, print1(a(n), ", "))

Formula

O.g.f. Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 + n*k*x).
E.g.f. A(x) = Sum_{n>=0} (1 - exp(-n*x))^n satisfies the identities:
(1) A(x) = Sum_{n>=1} exp(-n*x) * (1 - exp(-n*x))^(n-1).
(2) A(x) = 1 + (1/2) * Sum_{n>=1} (1 - exp(-n*x))^(n-1).
(3) A(x) = Sum_{n>=1} Sum_{k>=0} (-1)^k * C(n+k-1,k) * exp(-k*(n+k-1)*x).
E.g.f. at offset 1, B(x) = Sum_{n>=1} a(n-1)*x^n/n!, satisfies:
(1) B(x) = Sum_{n>=1} (1 - exp(-n*x))^n / n^2.
(2) B(x) = Pi^2/6 + log(1-exp(-x)) + Sum_{k>=2} Sum_{n>=k} (-1)^k * C(n-1,k-1) * exp(-k*n*x)/(k*n), a convergent series for x>0.
a(n) = Sum_{k=0..n} (-1)^(n-k) * k^n * k! * Stirling2(n,k).
a(n) = Sum_{k=1..n+1} ((k-1)!)^2 * Stirling2(n+1,k)^2 / 2 for n>0 with a(0)=1.
a(n) = Sum_{k=0..n} k^n * Sum_{j=0..k} (-1)^(n+k-j) * binomial(k,j) * (k-j)^n.
a(n) = A048163(n+1)/2 for n>0.
Limit n->infinity (a(n)/n!)^(1/n)/n = 1/(exp(1)*(log(2))^2) = 0.7656928576... - Vaclav Kotesovec, Jun 21 2013
a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, May 13 2014

A306209 Number A(n,k) of permutations of [n] within distance k of a fixed permutation; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 6, 5, 1, 1, 1, 2, 6, 14, 8, 1, 1, 1, 2, 6, 24, 31, 13, 1, 1, 1, 2, 6, 24, 78, 73, 21, 1, 1, 1, 2, 6, 24, 120, 230, 172, 34, 1, 1, 1, 2, 6, 24, 120, 504, 675, 400, 55, 1, 1, 1, 2, 6, 24, 120, 720, 1902, 2069, 932, 89, 1, 1, 1, 2, 6, 24, 120, 720, 3720, 6902, 6404, 2177, 144, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 29 2019

Keywords

Comments

A(n,k) counts permutations p of [n] such that |p(j)-j| <= k for all j in [n].

Examples

			A(4,1) = 5: 1234, 1243, 1324, 2134, 2143.
A(5,2) = 31: 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235, 14253, 14325, 14523, 21345, 21354, 21435, 21453, 21534, 21543, 23145, 23154, 24135, 24153, 31245, 31254, 31425, 31524, 32145, 32154, 34125.
Square array A(n,k) begins:
  1,  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,  2,   2,    2,    2,     2,     2,     2,     2, ...
  1,  3,   6,    6,    6,     6,     6,     6,     6, ...
  1,  5,  14,   24,   24,    24,    24,    24,    24, ...
  1,  8,  31,   78,  120,   120,   120,   120,   120, ...
  1, 13,  73,  230,  504,   720,   720,   720,   720, ...
  1, 21, 172,  675, 1902,  3720,  5040,  5040,  5040, ...
  1, 34, 400, 2069, 6902, 17304, 30960, 40320, 40320, ...
		

Crossrefs

Rows n=1-2 give: A000012, A040000.
Main diagonal gives A000142.
A(2n,n) gives A048163(n+1).
A(2n+1,n) gives A092552(n+1).
A(n,floor(n/2)) gives A306267.
A(n+2,n) gives A001564.
Cf. A130152.

Programs

  • Mathematica
    A[0, _] = 1;
    A[n_ /; n > 0, k_] := A[n, k] = Permanent[Table[If[Abs[i - j] <= k, 1, 0], {i, 1, n}, {j, 1, n}]];
    Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1 }] // Flatten (* Jean-François Alcover, Oct 18 2021, after Alois P. Heinz in A130152 *)

Formula

A(n,k) = Sum_{j=0..k} A130152(n,j) for n > 0, A(0,k) = 1.

A136126 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,k+n} having excedance set {1,2,...,k} (the empty set for k=0), 0 <= k <= n-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 31, 15, 1, 1, 31, 115, 115, 31, 1, 1, 63, 391, 675, 391, 63, 1, 1, 127, 1267, 3451, 3451, 1267, 127, 1, 1, 255, 3991, 16275, 25231, 16275, 3991, 255, 1, 1, 511, 12355, 72955, 164731, 164731, 72955, 12355, 511, 1
Offset: 1

Views

Author

Emeric Deutsch, Jan 17 2008

Keywords

Comments

The excedance set of a permutation p in S_n is the set of indices i such that p(i) > i.
Columns 1,2,3,4 yield A000225, A091344, A091347, A091348, respectively. Row sums yield A136127.
T(a+b-1,b-1)*(-1)^(a+b-1) = Sum_{k=0..} F(a,b,k)*(-1)^k where F(a,b,k) is the number of connected subgraphs of K(a,b) (the complete bipartite graph) with k edges. F(n,n,k) is A255192(n,k). - Thomas Dybdahl Ahle, Feb 18 2015 [The sum starts with k=0, and F(n,n,k) is A255192(n,k), but there seems to be no A255192(n,0). Is there no upper k-summation limit? - Wolfdieter Lang, Mar 15 2015]
Comment from Don Knuth, Aug 25 2020, added by N. J. A. Sloane, Sep 07 2020: (Start)
This array also arises from a problem about {0,1}-matrices. Symmetric array read by antidiagonals: A(n,k) (n >= 1, k >= 0) = number of n X k matrices of 0's and 1's satisfying two conditions: (i) no column is entirely 0; (ii) no 0 has simultaneously a 1 above it and another 1 to its left.
Equivalently (see the Steingrímsson-Williams reference) A(n,k) is the number of permutations p_1...p_{n+k} on {1,...,n+k} for which p_1 >= 1, ..., p_n >= n, p_{n+1} < n+1,..., p_{n+k} < n+k. Then A(n,k) = A(k+1,n-1), for n >= 1 and k >= 0.
For example, the seven 2 X 2 matrices satisfying (i) and (ii) are
00 01 10 10 11 11 11
11 11 01 11 00 01 11
and the seven permutations of {1, 2, 3, 4} satisfying the other definition are
1423, 2413, 3412, 3421, 4213, 4312, 4321.
(End)

Examples

			T(4,2) = 7 because 3412, 4312, 2413, 2314, 2431, 3421 and 4321 are the only permutations of {1,2,3,4} with excedance set {1,2}.
Triangle starts:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   31,    15,     1;
  1,  31,  115,   115,    31,     1;
  1,  63,  391,   675,   391,    63,    1;
  1, 127, 1267,  3451,  3451,  1267,  127,   1;
  1, 255, 3991, 16275, 25231, 16275, 3991, 255, 1;
  ...
Formatted as a square array A(n,k) with 0 <= k <= n:
  1,   1,    1,     1,      1,        1,         1,          1, ... [A000012]
  1,   3,    7,    15,     31,       63,       127,        255, ... [A000225]
  1,   7,   31,   115,    391,     1267,      3991,      12355, ... [A091344]
  1,  15,  115,   675,   3451,    16275,     72955,     316275, ... [A091347]
  1,  31,  391,  3451,  25231,   164731,    999391,    5767051, ... [A091348]
  1,  63, 1267, 16275, 164731,  1441923,  11467387,   85314915, ...
  1, 127, 3991, 72955, 999391, 11467387, 116914351, 1096832395, ...
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=proc(n,k) if k < n then add((-1)^(k+1-i)*factorial(i)*i^(n-1-k)* stirling2(k+1,i),i=1..k+1) else 0 end if end proc: for n to 10 do seq(T(n,k),k=0..n-1) end do; # yields sequence in triangular form
    # Alternatively as a square array:
    A := (n, k) -> add((-1)^(k-j)*j!*Stirling2(k+1,j+1)*(j+1)^(n+1), j=0..k);
    seq(print(seq(A(n, k), k=0..7)), n=0..6); # Peter Luschny, Mar 14 2018
    # Using the exponential generating function as given by Arakawa & Kaneko:
    gf := polylog(-t, 1-exp(-x))/(exp(x)-1):
    ser := series(gf, x, 12): c := n -> n!*coeff(ser, x, n):
    seq(lprint(seq(subs(t=k, c(n)), n=0..8)), k=0..8); # Peter Luschny, Apr 29 2021
    # Using recurrence relations:
    A := proc(n, k) option remember; local j; if n = 0 then return k^n fi;
    add(binomial(k+1, j+1)*A(n-1, k-j), j = 0..k) end:
    for n from 0 to 7 do lprint(seq(A(n, k), k=0..8)) od;  # Peter Luschny, Apr 19 2024
  • Mathematica
    T[n_, k_] := Sum[(-1)^(k + 1 - i)*i!*i^(n - 1 - k)*StirlingS2[k + 1, i], {i, 1, k + 1}];
    Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff( x*y*sum(m=0, n, m!*x^m*prod(k=1, m, (1+y+k*x*y)/(1+(1+y)*k*x+k^2*x^2*y +x*O(x^n))) ), n,x),k,y)} \\ Paul D. Hanna, Feb 01 2013
    for(n=1, 10,for(k=1,n, print1(T(n,k), ", "));print(""))
    
  • PARI
    tabl(nn) = {default(seriesprecision, nn+1); pol = log(1/(1-(exp(x)-1)*(exp(y)-1))) + O(x^nn); for (n=1, nn-1, poly = n!*polcoeff(pol, n, x); for (k=1, n, print1(k!*polcoeff(poly, k, y), ", ");); print(););} \\ Michel Marcus, Apr 17 2015

Formula

T(n,k) = Sum_{i=1..k+1} (-1)^(k+1-i)*i!*i^(n-1-k)*Stirling2(k+1,i) (0 <= k <= n-1).
G.f.: A(x,y) = x*y*Sum_{n>=1} n! * x^n*Product_{k=1..n} (1 + y + k*x*y) / (1 + (1+y)*k*x + k^2*x^2*y). - Paul D. Hanna, Feb 01 2013
Central terms of triangle equals A092552. - Paul D. Hanna, Feb 01 2013
T(n,k-1) = Sum_{i=0..k, m=0..i} binomial(i,m)*(-1)^(k-m)*i^(n-k)*m^k (1 <= k <= n). - Thomas Dybdahl Ahle, Feb 18 2015
E.g.f.: log(1/(1-(exp(x)-1)*(exp(y)-1))). - Vladimir Kruchinin, Apr 17 2015
Let W(n,k) = k!*Stirling2(n+1, k+1) denote the Worpitzky numbers, then A(n,k) = Sum_{j=0..k} (-1)^(k-j)*W(k,j)*(j+1)^(n+1) enumerates the square array. - Peter Luschny, Mar 14 2018
Assume the missing first row (1,0,0,...) of the array which Ayyer and Bényi call the 'poly-Bernoulli numbers of type C'. Then T(n, k) = p_{n}(k) where p_{n}(x) = Sum_{k=0..n} (-1)^(n-k)*(k+1)^x*Sum_{j=0..n} E1(n,j)*binomial(n-j, n-k), and E1(n, k) are the Eulerian numbers of first order. This reflects the Worpitzky approach to the Bernoulli numbers. This formula can alternatively be written as: T(n, k) = Sum_{j=0..k} (-1)^(k-j)*(j+1)^n*A028246(k+1, j+1). - Peter Luschny, Apr 29 2021

Extensions

Definition corrected. Changed "T(n,k) is the number of permutations of {1,2,...,n}..." to "T(n,k) is the number of permutations of {1,2,...,k+n}..." - Karel Casteels (kcasteel(AT)sfu.ca), Feb 17 2010

A244585 E.g.f.: Sum_{n>=1} (exp(n*x) - 1)^n / n.

Original entry on oeis.org

1, 5, 79, 2621, 149071, 12954365, 1596620719, 264914218301, 56934521042191, 15385666763366525, 5106110041462786159, 2041611328770984737981, 967972254733121945653711, 536962084044317668770841085, 344546100916295014902350596399
Offset: 1

Views

Author

Paul D. Hanna, Aug 21 2014

Keywords

Comments

Compare to: Sum_{n>=1} (1 - exp(-n*x))^n / n, the e.g.f. of A092552.

Examples

			E.g.f.: A(x) = x + 5*x^2/2! + 79*x^3/3! + 2621*x^4/4! + 149071*x^5/5! +...
where
A(x) = (exp(x)-1) + (exp(2*x)-1)^2/2 + (exp(3*x)-1)^3/3 + (exp(4*x)-1)^4/4 + (exp(5*x)-1)^5/5 + (exp(6*x)-1)^6/6 + (exp(7*x)-1)^7/7 +...
Exponentiation yields:
exp(A(x)) = 1 + x + 6*x^2/2! + 95*x^3/3! + 3043*x^4/4! + 167342*x^5/5! +...+ A243802(n)*x^n/n! +...
The O.G.F. begins:
F(x) = x + 5*x^2 + 79*x^3 + 2621*x^4 + 149071*x^5 + 12954365*x^6 +...
where
F(x) = x/(1-x) + 2*2!*x^2/((1-2*x)*(1-4*x)) + 3^2*3!*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 4^3*4!*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 5^4*5!*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n) = n!*polcoeff( sum(m=1,n+1, (exp(m*x +x*O(x^n)) - 1)^m / m), n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=if(n<1, 0, polcoeff(sum(m=1, n, m^(m-1) * m! * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n))}
    for(n=0, 20, print1(a(n), ", "))

Formula

O.g.f.: Sum_{n>=1} n^(n-1) * n! * x^n / Product_{k=1..n} (1 - n*k*x).
a(n) ~ c * d^n * (n!)^2 / n^(3/2), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491..., r = 0.873702433239668330496568304720719298... is the root of the equation exp(1/r)/r + (1+exp(1/r)) * LambertW(-exp(-1/r)/r) = 0, and c = 0.37498840921734807101035131780130551... . - Vaclav Kotesovec, Aug 21 2014

A212084 Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.

Original entry on oeis.org

1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2012

Keywords

Comments

The complete bipartite graph K_(n,n) has 2n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2n+1 = A005408(n) coefficients.

Examples

			3 example graphs:                     +-----------+
.                 o        o   o      o   o   o   |
.                 |        |\ /|      |\ /|\ /|\ /
.                 |        | X |      | X | X | X
.                 |        |/ \|      |/ \|/ \|/ \
.                 o        o   o      o   o   o   |
.                                     +-----------+
Graph:         K_(1,1)    K_(2,2)      K_(3,3)
Vertices:         2          4            6
Edges:            1          4            9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
  1;
  1,  -1,   0;
  1,  -4,   6,    -3,     0;
  1,  -9,  36,   -75,    78,     -31,       0;
  1, -16, 120,  -524,  1400,   -2236,    1930,     -675, ...
  1, -25, 300, -2200, 10650,  -34730,   75170,  -102545, ...
  1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
  ...
		

Crossrefs

Columns k=0-2 give: A000012, (-1)*A000290, A083374.
Row sums and last elements of rows give: A000007.
Row lengths give: A005408.
Sums of absolute values of row elements give: A048163(n+1).
T(n,2n-1) = (-1)*A092552(n).

Programs

  • Maple
    P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
    T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
    seq(T(n), n=1..8);

Formula

T(n,k) = [q^(2n-k)] Sum_{j=0..n} (q-j)^n * S2(n,j) * Product_{i=0..j-1} (q-i).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 03 2024

A220179 E.g.f.: Sum_{n>=1} (1 - exp(-n^2*x))^n / n.

Original entry on oeis.org

1, 15, 1267, 316275, 174397531, 179770837155, 310789895286907, 834906367019076675, 3293344593080631993211, 18259284528276047000517795, 137429981152689382429349060347, 1365009985652048448232840864764675, 17475885712645599218827214639383437691
Offset: 1

Views

Author

Paul D. Hanna, Dec 06 2012

Keywords

Comments

Compare to the trivial identity: x = Sum_{n>=1} (1 - exp(-x))^n/n.
Compare to the e.g.f. of A092552: Sum_{n>=1} (1 - exp(-n*x))^n/n.

Examples

			E.g.f.: A(x) = x + 15*x^2/2! + 1267*x^3/3! + 316275*x^4/4! + 174397531*x^5/5! +...
where
A(x) = (1-exp(-x)) + (1-exp(-4*x))^2/2 + (1-exp(-9*x))^3/3 + (1-exp(-16*x))^4/4 + (1-exp(-25*x))^5/5 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * k^(2*n-1) * k! * StirlingS2[n,k], {k,1,n}], {n,1,20}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    a(n)=n!*polcoeff(sum(k=1, n, (1-exp(-k^2*x+x*O(x^n)))^k/k), n)
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    a(n)=polcoeff(sum(m=1, n, m^(2*m-1)*m!*x^m/prod(k=1, m, 1+m^2*k*x+x*O(x^n))), n) \\ Paul D. Hanna, Jan 05 2013
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=1, n, (-1)^(n-k)*k^(2*n-1)*k!*stirling(n, k, 2))}
    for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 05 2013

Formula

O.g.f.: Sum_{n>=1} n^(2*n-1) * n! * x^n / Product_{k=1..n} (1 - n^2*k*x). - Paul D. Hanna, Jan 05 2013
a(n) = Sum_{k=1..n} (-1)^(n-k) * k^(2*n-1) * k! * Stirling2(n,k). - Paul D. Hanna, Jan 05 2013
a(n) ~ c * d^n * (n!)^3 / n^2, where d = 6.8312860494079582446988970296645779575650627187418208311407895492635... and c = 0.175744118254830086361220160145768507562830495967... . - Vaclav Kotesovec, May 08 2014

A188634 E.g.f.: Sum_{n>=0} (1 - exp(-(n+1)*x))^n/(n+1).

Original entry on oeis.org

1, 1, 4, 46, 1066, 41506, 2441314, 202229266, 22447207906, 3216941445106, 578333776748674, 127464417117501586, 33800841048945424546, 10617398393395844992306, 3898852051843774954576834, 1654948033478889053351543506, 804119629083230641164978005986
Offset: 0

Views

Author

Paul D. Hanna, Dec 28 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 46*x^3/3! + 1066*x^4/4! + 41506*x^5/5! +...
where
A(x) = 1 + (1-exp(-2*x))/2 + (1-exp(-3*x))^2/3 + (1-exp(-4*x))^3/4 + (1-exp(-5*x))^4/5 + (1-exp(-6*x))^5/6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(k+n)*(k+1)^(n-1)*k!*StirlingS2[n, k],{k,0,n}],{n,0,20}]
    Table[n!*SeriesCoefficient[Sum[(1-E^(-x*(k+1)))^k/(k+1),{k,0,n}],{x,0,n}],{n,0,20}]  (* Vaclav Kotesovec, Dec 30 2012 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-(k+1)*x+x*O(x^n)))^k/(k+1)), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(j=0,n, (j+1)^(n-1)*sum(i=0,j, (-1)^(n+j-i)*binomial(j,i)*(j-i)^n))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = Sum_{j=0..n} (j+1)^(n-1) * Sum_{i=0..j} (-1)^(n+j-i)*C(j, i)*(j-i)^n.
Ignoring the initial term, equals a diagonal of array A099594, which forms the poly-Bernoulli numbers B(-k,n).
Limit n->infinity a(n)^(1/n)/n^2 = 0.281682... - Vaclav Kotesovec, Dec 30 2012
a(n) = A266695(2*n-1) for n >= 1. - Alois P. Heinz, Apr 17 2024

A373855 a(n) = Sum_{k=1..n} k! * k^(n-1) * |Stirling1(n,k)|.

Original entry on oeis.org

0, 1, 5, 80, 2690, 155074, 13658386, 1706098008, 286888266696, 62485391828448, 17112247116585744, 5755236604915060944, 2331975856351260982848, 1120439648590390138640304, 629855675998212293917375344, 409557081242059531918330384896
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=15; Range[0,nmax]!CoefficientList[Series[Sum[(-Log[1 - k*x])^k / k,{k,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Jun 19 2024 *)
  • PARI
    a(n) = sum(k=1, n, k!*k^(n-1)*abs(stirling(n, k, 1)));

Formula

E.g.f.: Sum_{k>=1} (-log(1 - k*x))^k / k.

A382676 a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling2(n+1,k+1)^2.

Original entry on oeis.org

1, 4, 52, 1372, 60316, 3964684, 363503932, 44280657292, 6913081723516, 1345238707327564, 319137578070718012, 90648956570718822412, 30369040605677566161916, 11848724306426305222109644, 5325560174867275152102351292, 2731649923185995549312271694732
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2025

Keywords

Crossrefs

Main diagonal of A382673.

Programs

  • PARI
    a(n) = sum(k=0, n, k!^2*binomial(k+2, 2)*stirling(n+1, k+1, 2)^2);

Formula

a(n) = (n!)^2 * [(x*y)^n] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^3.

A373857 a(n) = Sum_{k=1..n} k! * k^(n-1) * Stirling1(n,k).

Original entry on oeis.org

0, 1, 3, 32, 734, 28994, 1752046, 150262104, 17356844088, 2597710341600, 488957612319984, 113044488306692304, 31490845086661001664, 10403092187976909854640, 4021236906890850070201488, 1798052050351216209712206336, 920859156623446912386646303104
Offset: 0

Views

Author

Seiichi Manyama, Jun 19 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=16; Range[0,nmax]!CoefficientList[Series[Sum[(Log[1 + k*x])^k / k,{k,nmax}],{x,0,nmax}],x] (* Stefano Spezia, Jun 19 2024 *)
  • PARI
    a(n) = sum(k=1, n, k!*k^(n-1)*stirling(n, k, 1));

Formula

E.g.f.: Sum_{k>=1} log(1 + k*x)^k / k.
Showing 1-10 of 18 results. Next