cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A010842 Expansion of e.g.f.: exp(2*x)/(1-x).

Original entry on oeis.org

1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0

Views

Author

Keywords

Comments

Incomplete Gamma Function at 2, more precisely: a(n) = exp(2)*Gamma(1+n,2).
Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 0 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
a(n) is the number of ways to split the set {1,2,...,n} into two disjoint subsets S,T with S union T = {1,2,...,n} and linearly order S and then choose a subset of T. - Geoffrey Critzer, Mar 10 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.

Crossrefs

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
  • Maple
    G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
    seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
    a[n_] := n! Sum[2^i/i!, {i, 0, n}]
    Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
  • PARI
    x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
    

Formula

a(n) = row sums of A090802. - Ross La Haye, Aug 18 2006
a(n) = n*a(n-1) + 2^n = (n+2)*a(n-1) - (2*n-2)*a(n-2) = n!*Sum_{j=0..n} floor(2^j/j!). - Henry Bottomley, Jul 12 2001
a(n) is the permanent of the n X n matrix with 3's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*3^k. - Philippe Deléham, Dec 12 2003
Binomial transform of A000522. - Ross La Haye, Sep 15 2004
a(n) = Sum_{k=0..n} k!*binomial(n, k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A066534(n) + 2^n. - Ross La Haye, Nov 16 2005
G.f.: hypergeom([1,k],[],x/(1-2*x))/(1-2*x) with k=1,2,3 is the generating function for A010842, A081923, and A082031. - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0), where E(k) = 1 - x/(1-2/(2+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n!*e^2 - Sum_{k >= 0} 2^(n + k + 1)/((n + 1)*...*(n + k + 1)).
= n!*e^2 - e^2*( Integral_{t = 0..2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 0} t^n*exp(-t)*Heaviside(t-2) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Bottomley's second-order recurrence above a(n) = (n + 2)*a(n-1) - 2*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^2 = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2 - ...))))). (End)
a(n) = 2^(n+1)*U(1, n+2, 2), where U is the Bessel U function. - Peter Luschny, Nov 26 2014
For n >= 4, a(n) = r - (r mod 2^(n - floor((2/n) + log_2(n)))) where r = n! * e^2 - 2^(n+1)/(n+1). - Stan Wagon, Apr 28 2016
G.f.: A(x) = 1/(1 - 2*x - x/(1 - x/(1 - 2*x - 2*x/(1 - 2*x/(1 - 2*x - 3*x/(1 - 3*x/(1 - 2*x - 4*x/(1 - 4*x/(1 - 2*x - ... ))))))))). - Peter Bala, May 26 2017
a(n) = Sum_{k=0..n} (-1)^(n-k)*A137346(n, k). - Mélika Tebni, May 10 2022 [This is equivalent to a(n) = KummerU(-n, -n, 2). - Peter Luschny, May 10 2022]
a(n) = F(n), where the function F(x) := 2^(x+1) * Integral_{t >= 0} e^(-2*t)*(1 + t)^x dt smoothly interpolates this sequence to all real values of x. - Peter Bala, Sep 05 2023

A094816 Triangle read by rows: T(n,k) are the coefficients of Charlier polynomials: A046716 transposed, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 24, 29, 10, 1, 1, 89, 145, 75, 15, 1, 1, 415, 814, 545, 160, 21, 1, 1, 2372, 5243, 4179, 1575, 301, 28, 1, 1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1, 1, 125673, 321690, 318926, 163191, 47775, 8274, 834, 45, 1, 1, 1112083, 2995011
Offset: 0

Views

Author

Philippe Deléham, Jun 12 2004

Keywords

Comments

The a-sequence for this Sheffer matrix is A027641(n)/A027642(n) (Bernoulli numbers) and the z-sequence is A130189(n)/ A130190(n). See the W. Lang link.
Take the lower triangular matrix in A049020 and invert it, then read by rows! - N. J. A. Sloane, Feb 07 2009
Exponential Riordan array [exp(x), log(1/(1-x))]. Equal to A007318*A132393. - Paul Barry, Apr 23 2009
A signed version of the triangle appears in [Gessel]. - Peter Bala, Aug 31 2012
T(n,k) is the number of permutations over all subsets of {1,2,...,n} (Cf. A000522) that have exactly k cycles. T(3,2) = 6: We permute the elements of the subsets {1,2}, {1,3}, {2,3}. Each has one permutation with 2 cycles. We permute the elements of {1,2,3} and there are three permutations that have 2 cycles. 3*1 + 1*3 = 6. - Geoffrey Critzer, Feb 24 2013
From Wolfdieter Lang, Jul 28 2017: (Start)
In Chihara's book the row polynomials (with rising powers) are the Charlier polynomials (-1)^n*C^(a)_n(-x), with a = -1, n >= 0. See p. 170, eq. (1.4).
In Ismail's book the present Charlier polynomials are denoted by C_n(-x;a=1) on p. 177, eq. (6.1.25). (End)
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-1. See A381082. - Igor Victorovich Statsenko, Feb 14 2025

Examples

			From _Paul Barry_, Apr 23 2009: (Start)
Triangle begins
  1;
  1,     1;
  1,     3,     1;
  1,     8,     6,     1;
  1,    24,    29,    10,     1;
  1,    89,   145,    75,    15,    1;
  1,   415,   814,   545,   160,   21,   1;
  1,  2372,  5243,  4179,  1575,  301,  28,  1;
  1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1;
Production matrix is
  1, 1;
  0, 2, 1;
  0, 1, 3,  1;
  0, 1, 3,  4,  1;
  0, 1, 4,  6,  5,  1;
  0, 1, 5, 10, 10,  6,  1;
  0, 1, 6, 15, 20, 15,  7,  1;
  0, 1, 7, 21, 35, 35, 21,  8, 1;
  0, 1, 8, 28, 56, 70, 56, 28, 9, 1; (End)
		

References

  • T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978, Ch. VI, 1., pp. 170-172.
  • Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005, EMA, Vol. 98, p. 177.

Crossrefs

Columns k=0..4 give A000012, A002104, A381021, A381022, A381023.
Diagonals: A000012, A000217.
Row sums A000522, alternating row sums A024000.
KummerU(-n,1-n-x,z): this sequence (z=1), |A137346| (z=2), A327997 (z=3).

Programs

  • Maple
    A094816 := (n,k) -> (-1)^(n-k)*add(binomial(-j-1,-n-1)*Stirling1(j,k), j=0..n):
    seq(seq(A094816(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 10 2016
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[ Exp[x]/(1-x)^y,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Feb 24 2013 *)
    Flatten[Table[(-1)^(n-k) Sum[Binomial[-j-1,-n-1] StirlingS1[j,k],{j,0,n}], {n,0,9},{k,0,n}]] (* Peter Luschny, Apr 10 2016 *)
    p[n_] := HypergeometricU[-n, 1 - n - x, 1];
    Table[CoefficientList[p[n], x], {n,0,9}] // Flatten (* Peter Luschny, Oct 27 2019 *)
  • PARI
    {T(n, k)= local(A); if( k<0 || k>n, 0, A = x * O(x^n); polcoeff( n! * polcoeff( exp(x + A) / (1 - x + A)^y, n), k))} /* Michael Somos, Nov 19 2006 */
    
  • Sage
    def a_row(n):
        s = sum(binomial(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

E.g.f.: exp(t)/(1-t)^x = Sum_{n>=0} C(x,n)*t^n/n!.
Sum_{k = 0..n} T(n, k)*x^k = C(x, n), Charlier polynomials; C(x, n)= A024000(n), A000012(n), A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n), A095740(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Feb 27 2013
T(n+1, k) = (n+1)*T(n, k) + T(n, k-1) - n*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k>0, T(n, k) = 0 if k<0.
PS*A008275*PS as infinite lower triangular matrices, where PS is a triangle with PS(n, k) = (-1)^k*A007318(n, k). PS = 1/PS. - Gerald McGarvey, Aug 20 2009
T(n,k) = (-1)^(n-k)*Sum_{j=0..n} C(-j-1, -n-1)*S1(j, k) where S1 are the signed Stirling numbers of the first kind. - Peter Luschny, Apr 10 2016
Absolute values T(n,k) of triangle (-1)^(n+k) T(n,k) where row n gives coefficients of x^k, 0 <= k <= n, in expansion of Sum_{k=0..n} binomial(n,k) (-1)^(n-k) x^{(k)}, where x^{(k)} := Product_{i=0..k-1} (x-i), k >= 1, and x^{(0)} := 1, the falling factorial powers. - Daniel Forgues, Oct 13 2019
From Peter Bala, Oct 23 2019: (Start)
The n-th row polynomial is
R(n, x) = Sum_{k = 0..n} (-1)^k*binomial(n, k)*k! * binomial(-x, k).
These polynomials occur in series acceleration formulas for the constant
1/e = n! * Sum_{k >= 0} (-1)^k/(k!*R(n,k)*R(n,k+1)), n >= 0. (cf. A068985, A094816 and A137346). (End)
R(n, x) = KummerU[-n, 1 - n - x, 1]. - Peter Luschny, Oct 27 2019
Sum_{j=0..m} (-1)^(m-j) * Bell(n+j) * T(m,j) = m! * Sum_{k=0..n} binomial(k,m) * Stirling2(n,k). - Vaclav Kotesovec, Aug 06 2021
From Natalia L. Skirrow, Jun 11 2025: (Start)
G.f.: 2F0(1,y;x/(1-x)) / (1-x).
Polynomial for the n-th row is R(n,y) = 2F0(-n,y;-1).
Falling g.f. for n-th row: Sum_{k=0..n} a(n,k)*(y)_k = [x^0] 2F0(1,-n;-1/x) * (1+log(1/(1-x)))^y = [x^n] e^x * Gamma(n+1,x) * (1+log(1/(1-x)))^y, where (y)_k = y!/(y-k)! denotes the falling factorial. (End)

A092553 Decimal expansion of 1/e^2.

Original entry on oeis.org

1, 3, 5, 3, 3, 5, 2, 8, 3, 2, 3, 6, 6, 1, 2, 6, 9, 1, 8, 9, 3, 9, 9, 9, 4, 9, 4, 9, 7, 2, 4, 8, 4, 4, 0, 3, 4, 0, 7, 6, 3, 1, 5, 4, 5, 9, 0, 9, 5, 7, 5, 8, 8, 1, 4, 6, 8, 1, 5, 8, 8, 7, 2, 6, 5, 4, 0, 7, 3, 3, 7, 4, 1, 0, 1, 4, 8, 7, 6, 8, 9, 9, 3, 7, 0, 9, 8, 1, 2, 2, 4, 9, 0, 6, 5, 7, 0, 4, 8, 7, 5, 5, 0, 7, 7
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 09 2004

Keywords

Comments

Consider a substrate (such as polyvinyl alcohol or in forming the polymer of methyl vinyl ketone) in a "1,3 configuration" in which substituents branching off the substrate can irreversibly join with neighboring substituents unless the neighbor is already joined to its other neighbor. Then this constant is the fraction of joined substituents on an infinite substrate.
This also applies to reversible reactions when the rate of forward reaction is much faster than that of backward reaction; see Flory p. 1518 footnote 5. This had "satisfactory accord" with his experimental data using methyl vinyl ketone polymer for which the experimentally-obtained percentage was 0.15.
(A 1,k configuration is a substituent branching off a carbon atom, k-2 intermediate carbon atoms, and substituent branching off a carbon atom.) - Charles R Greathouse IV, Nov 30 2012
Also the probability, as n increases without bound, that a permutation of length n is simple: no intervals of length 1 < k < n (an interval of a permutation s is a set of contiguous numbers which in s have consecutive indices). - Charles R Greathouse IV, May 14 2014

Examples

			0.1353352832366...
		

Crossrefs

Programs

Formula

From Peter Bala, Oct 27 2019: (Start)
1/e^2 = Sum_{k >= 0} (-2)^k/k!.
This is the case n = 0 of the following series acceleration formulas:
1/e^2 = n!*2^n*Sum_{k >= 0} (-2)^k/(k!*R(n,k)*R(n,k+1)), n = 0,1,2,..., where R(n,x) = Sum_{k = 0..n} (-1)^k*binomial(n,k)*k!*2^(n-k)*binomial(-x,k) are the (unsigned) row polynomials of A137346. Cf. A094816. (End)

A269953 Triangle read by rows: T(n, k) = Sum_{j=0..n} binomial(-j-1, -n-1)*S1(j, k) where S1 are the Stirling cycle numbers A132393.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 2, 0, 1, 1, 0, 5, 2, 1, -1, 9, 15, 15, 5, 1, 1, 35, 94, 85, 40, 9, 1, -1, 230, 595, 609, 315, 91, 14, 1, 1, 1624, 4458, 4844, 2779, 924, 182, 20, 1, -1, 13209, 37590, 43238, 26817, 9975, 2310, 330, 27, 1
Offset: 0

Views

Author

Peter Luschny, Apr 12 2016

Keywords

Comments

Replacing the Stirling cycle numbers in the definition by the Stirling set numbers leads to A105794.
From Wolfdieter Lang, Jun 19 2017: (Start)
The triangle t(n, k) = (-1)^(n-k)*T(n, k) is the matrix product of P = A007318 (Pascal) and s1 = A048994 (signed Stirling1). This is Sheffer (exp(t), log(1+t)).
The present triangle T is therefore the Sheffer triangle (exp(-t), -log(1-t)). Note that P is Sheffer (exp(t), t) (of the Appell type). (End)
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=1. See A381082. - Igor Victorovich Statsenko, Feb 14 2025

Examples

			Triangle starts:
   1;
  -1,  1;
   1, -1,  1;
  -1,  2,  0,  1;
   1,  0,  5,  2,  1;
  -1,  9, 15, 15,  5,  1;
   1, 35, 94, 85, 40,  9,  1.
		

Crossrefs

Columns k=0..4 give A033999, A002741, A381064, A381065, A381066.
Cf. A000166 (row sums), A080956 (diag n,n-1).
KummerU(-n,1-n-x,z): this sequence (z=-1), A094816 (z=1), |A137346| (z=2), A327997 (z=3).

Programs

  • Maple
    A269953 := (n,k) -> add(binomial(-j-1,-n-1)*abs(Stirling1(j,k)), j=0..n):
    seq(print(seq(A269953(n, k), k=0..n)), n=0..9);
    # Alternative:
    egf := exp(-t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n):
    seq(n!*seq(coeff(p(n), x, k), k=0..n), n=0..9); # Peter Luschny, Oct 28 2019
  • Mathematica
    Flatten[Table[Sum[Binomial[-j-1,-n-1] Abs[StirlingS1[j,k]], {j,0,n}], {n,0,9},{k,0,n}]]
    (* Or: *)
    p [n_] := HypergeometricU[-n, 1 - n - x, -1];
    Table[CoefficientList[p[n], x], {n, 0, 9}] (* Peter Luschny, Oct 28 2019 *)

Formula

From Wolfdieter Lang, Jun 19 2017: (Start)
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n,k)*x^k: exp(-t)/(1 - t)^x.
E.g.f. of column k sequence: exp(-x)*(-log(1-x))^k/k!, k >= 0. (End)
From Peter Bala, Oct 26 2019: (Start)
Let R(n, x) = (-1)^n*Sum_{k >= 0} binomial(n,k)*k!* binomial(-x,k) the n-th row polynomial of this triangle.
R(n, x) = c_n(-x;-1), where c_n(x;a) denotes the n-th Poisson Charlier polynomial.
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,.... (End)
R(n, x) = KummerU(-n, 1-n-x, -1). - Peter Luschny, Oct 28 2019

A327997 Triangle read by rows: coefficients of the polynomials given by KummerU(-n, 1 - n - x, 3).

Original entry on oeis.org

1, 3, 1, 9, 7, 1, 27, 38, 12, 1, 81, 192, 101, 18, 1, 243, 969, 755, 215, 25, 1, 729, 5115, 5494, 2205, 400, 33, 1, 2187, 29322, 40971, 21469, 5355, 679, 42, 1, 6561, 187992, 323658, 209356, 66619, 11452, 1078, 52, 1, 19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1
Offset: 0

Views

Author

Peter Luschny, Oct 27 2019

Keywords

Comments

KummerU(-n, 1-n-x, 1) are the Charlier polynomials with coefficients in A094816, the coefficients of KummerU(-n, 1-n-x, 2) are in |A137346|.
The exponential generating function of this family of sequences of polynomials is in its general form (1-t)^(-x)*exp(alpha*t) with a parameter alpha.

Examples

			The triangle starts:
      1;
      3,       1;
      9,       7,       1;
     27,      38,      12,       1;
     81,     192,     101,      18,      1;
    243,     969,     755,     215,     25,      1;
    729,    5115,    5494,    2205,    400,     33,     1;
   2187,   29322,   40971,   21469,   5355,    679,    42,    1;
   6561,  187992,  323658,  209356,  66619,  11452,  1078,   52,  1;
  19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1;
		

Crossrefs

A094816 (z=1), |A137346| (z=2), this sequence (z=3).
Columns k=0..3 give A000244, A346395, A381052, A382701.
Row sums in A053486.

Programs

  • Maple
    egf := exp(3*t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n):
    seq(print(n!*seq(coeff(p(n), x, k), k=0..n)), n=0..9);
  • Mathematica
    p [n_] := HypergeometricU[-n, 1 - n - x, 3];
    Table[CoefficientList[p[n], x], {n, 0, 9}] // Flatten
  • PARI
    T(n, k) = sum(j=k, n, 3^(n-j)*binomial(n, j)*abs(stirling(j, k, 1))); \\ Seiichi Manyama, Apr 19 2025

Formula

T(n, k) = n!*[x^k] p(n) where p(n) = [t^n] exp(3*t)*(1-t)^(-x).
From Igor Victorovich Statsenko, Feb 14 2025: (Start)
T(m, n, k) = Sum_{i=0..n} Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), for m = -3.
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-3. (End)

A381082 Triangle T(n,k) read by rows, where the columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=2.

Original entry on oeis.org

1, -2, 1, 4, -3, 1, -8, 8, -3, 1, 16, -18, 11, -2, 1, -32, 44, -20, 15, 0, 1, 64, -80, 94, 5, 25, 3, 1, -128, 272, 56, 294, 105, 49, 7, 1, 256, 112, 1868, 1596, 1169, 392, 98, 12, 1, -512, 5280, 12216, 16148, 10290, 4305, 1092, 186, 18, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
  [0]     1;
  [1]    -2,      1;
  [2]     4,     -3,       1;
  [3]    -8,      8,      -3,       1;
  [4]    16,    -18,      11,      -2,       1;
  [5]   -32,     44,     -20,      15,       0,        1;
  [6]    64,    -80,      94,       5,      25,        3,     1;
  [7]  -128,    272,      56,     294,     105,       49,     7,     1;
  [8]   256,    112,    1868,    1596,    1169,      392,    98,    12,    1;
  [9]  -512,   5280,   12216,   16148,   10290,     4305,  1092,   186,   18,     1;
  ...
		

Crossrefs

Cf. A000023 (row sums).
Columns 0,1: A122803, A346397.
Triangles: for m = -3 is A327997; for m = -2 is A137346 (unsigned); for m = -1 is A094816; for m = 0 is A132393; for m = 1 is A269953.

Programs

  • Maple
    T:=(m,n,k)->add(Stirling1(n-i,k)*binomial(n,i)*m^(i)*(-1)^(n-k), i=0..n):
    m:=2:seq(print(seq(T(m,n,k), k=0..n)), n=0..9);

Formula

T(n,k) = Sum_{i=0..n} Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), where m = 2.
Showing 1-6 of 6 results.