cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A337857 a(n) is the smallest positive integer m with no repeated digits such that A137564(n + m) = n, or a(n) = 0 if no m exists.

Original entry on oeis.org

10, 20, 30, 40, 50, 60, 70, 80, 90, 90, 0, 109, 120, 127, 136, 145, 154, 163, 172, 180, 190, 0, 209, 218, 230, 236, 245, 254, 263, 270, 280, 290, 0, 309, 318, 327, 340, 345, 354, 360, 370, 380, 390, 0, 409, 418, 427, 436, 450, 450, 460, 470, 480, 490, 0, 509, 518, 527, 536, 540
Offset: 1

Views

Author

Rodolfo Kurchan, Sep 26 2020

Keywords

Comments

Terms computed by Claudio Meller.
We set a(n)=0 when n has repeated digits; for example, a(11) = 0, a(22) = 0, a(100) = 0, a(101) = 0, since compact(c) cannot result in such n. Is n=450 the first other number that has no solution?

Crossrefs

Programs

  • PARI
    f(n) = {my(d=digits(n)); fromdigits(vecextract(d, vecsort(vecsort(d, , 9))))}; \\ A137564
    isokd(m) = my(d=digits(m)); #d == #Set(d); \\ A010784
    a(n) = my(d=digits(n)); if (#Set(d) == #d, my(m=1); while (!isokd(m) || (f(n+m) != n), m++); m); \\ Michel Marcus, Jan 13 2022
    
  • Python
    def has_repeated_digits(n): s = str(n); return len(s) > len(set(s))
    def A137564(n):
        seen, out, s = set(), "", str(n)
        for d in s:
            if d not in seen: out += d; seen.add(d)
        return int(out)
    def a(n):
        if n == 0 or has_repeated_digits(n): return 0
        m = 1
        while has_repeated_digits(m) or A137564(n+m) != n: m += 1
        return m
    print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Jul 23 2022

A106612 a(n) = numerator(n/(n+11)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 2, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 4, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 5, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 6, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

In general, the numerators of n/(n+p) for prime p and n >= 0, form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
a(n) <> n iff n = 11 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. A109052, A137564 (differs, e.g., for n=100).
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106611 (k = 7 thru 10), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([0..80],n->NumeratorRat(n/(n+11))); # Muniru A Asiru, Feb 19 2019
  • Magma
    [Numerator(n/(n+11)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    seq(numer(n/(n+11)),n=0..80); # Muniru A Asiru, Feb 19 2019
  • Mathematica
    f[n_]:=Numerator[n/(n+11)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1},{0,1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,17,18,19,20,21},80] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    vector(100, n, n--; numerator(n/(n+11))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [lcm(n,11)/11 for n in range(0, 54)] # Zerinvary Lajos, Jun 09 2009
    

Formula

G.f.: x/(1-x)^2 - 10*x^11/(1-x^11)^2. - Paul D. Hanna, Jul 27 2005
a(n) = lcm(n,11)/11.
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109052(n)/11.
Dirichlet g.f.: zeta(s-1)*(1-10/11^s). (End)
a(n) = 2*a(n-11) - a(n-22). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(11^e) = 11^(e-1), and a(p^e) = p^e if p != 11.
Sum_{k=1..n} a(k) ~ (111/242) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 21*log(2)/11. - Amiram Eldar, Sep 08 2023

A254143 Products of any two not necessarily distinct terms of A237424.

Original entry on oeis.org

1, 4, 7, 16, 28, 34, 37, 49, 67, 136, 148, 238, 259, 268, 334, 337, 367, 469, 667, 1156, 1258, 1336, 1348, 1369, 1468, 2278, 2338, 2359, 2479, 2569, 2668, 3334, 3337, 3367, 3667, 4489, 4669, 6667, 11356, 11458, 12358, 12469, 12478, 13336, 13348, 13468, 13579
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 28 2015

Keywords

Comments

Digits are in nondecreasing order for all terms in decimal representation;
a(396) = 1123456789 = 3367 * 333667 is the smallest term containing all nonzero decimal digits: A254323(396) = 123456789;
A254323(n) = A137564(a(n)).

Examples

			Initial terms of A237424: 1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334 ...
.  n | a(n) = A237424(i) * A237424(j)
. ---+-------------------------------
.  1 |    1 = 1 * 1   = A237424(1)^2
.  2 |    4 = 1 * 4   = A237424(1) * A237424(2)
.  3 |    7 = 1 * 7   = A237424(1) * A237424(3)
.  4 |   16 = 4 * 4   = A237424(2)^2
.  5 |   28 = 4 * 7   = A237424(2) * A237424(3)
.  6 |   34 = 1 * 34  = A237424(1) * A237424(4)
.  7 |   37 = 4 * 37  = A237424(1) * A237424(5)
.  8 |   49 = 7 * 7   = A237424(3)^2
.  9 |   67 = 1 * 67  = A237424(1) * A237424(6)
. 10 |  136 = 4 * 34  = A237424(2) * A237424(4)
. 11 |  148 = 4 * 37  = A237424(2) * A237424(5)
. 12 |  238 = 7 * 34  = A237424(3) * A237424(4)
. 13 |  259 = 7 * 37  = A237424(3) * A237424(5)
. 14 |  268 = 4 * 67  = A237424(2) * A237424(6)
. 15 |  334 = 1 * 334 = A237424(1) * A237424(7)
. 16 |  337 = 1 * 337 = A237424(1) * A237424(8)
. 17 |  367 = 1 * 367 = A237424(1) * A237424(9)
. 18 |  469 = 7 * 67  = A237424(3) * A237424(6)
. 19 |  667 = 1 * 34  = A237424(1) * A237424(10)
. 20 | 1156 = 34 * 34 = A237424(4)^2
see link for more.
		

Crossrefs

Subsequence of A009994.
Cf. A237424, A254323, A137564, A254338 (initial digits), A254339 (final digits).

Programs

  • Haskell
    import Data.Set (empty, fromList, deleteFindMin, union)
    import qualified Data.Set as Set (null)
    a254143 n = a254143_list !! (n-1)
    a254143_list = f a237424_list [] empty where
       f xs'@(x:xs) zs s
         | Set.null s || x < y = f xs zs' (union s $ fromList $ map (* x) zs')
         | otherwise           = y : f xs' zs s'
         where zs' = x : zs
               (y, s') = deleteFindMin s
    
  • PARI
    listA237424(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
    list(lim)=my(v=List(),u=listA237424(lim),t); for(i=1,#u, for(j=1,i, t=u[i]*u[j]; if(t>lim,break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, May 13 2015

A254323 Remove in decimal representation of A254143(n) all repeated digits.

Original entry on oeis.org

1, 4, 7, 16, 28, 34, 37, 49, 67, 136, 148, 238, 259, 268, 34, 37, 367, 469, 67, 156, 1258, 136, 1348, 1369, 1468, 278, 238, 2359, 2479, 2569, 268, 34, 37, 367, 367, 489, 469, 67, 1356, 1458, 12358, 12469, 12478, 136, 1348, 13468, 13579, 1468, 2378, 2579
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 28 2015

Keywords

Comments

a(n) <= 123456789 for all n, and a(n) < 123456789 for n < 396;
a(396) = 123456789 = A050289(1);

Crossrefs

Cf. A254338 (initial digits), A254339 (final digits).

Programs

  • Haskell
    a254323 = a137564 . a254143

A337864 a(n) is the number formed by removing from n each digit if it is a duplicate of the previous digit, from left to right.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 2, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 4, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 5, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 6, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

Rodolfo Kurchan, Sep 27 2020

Keywords

Comments

Please see discussion in A337857.
Similar to A137564 from which first differs at a(101) = 101 here, there a(101) = 10.
Differs from A106612 starting at n=100. - R. J. Mathar, Oct 08 2020

Examples

			a(100) = 10. Note that the second zero from the index n = 100 has been removed.
a(101) = 101.
a(1211323171) = 121323171. Note that the third "1" from the index n has been removed.
		

Crossrefs

Cf. A043096 (fixed points a(n)=n).
Cf. A090079 (in binary).

Programs

A370748 a(0)=1; a(n) = sum of all previous terms, eliminating repeated digits (starting from the left).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 653, 6189, 7238, 7961, 875, 8452, 9604, 10658, 176, 17342, 13468, 14852, 16304, 179308, 35861, 3947, 39842, 43826, 48209, 5301, 53602, 589204, 17840, 196248, 139246, 153742, 16854
Offset: 0

Views

Author

Sergio Pimentel, Mar 07 2024

Keywords

Comments

Duplicate digits are eliminated as in A137564.
No term can be greater than 9876543210.
a(260390084) = 9876543210. - Michael S. Branicky, Apr 09 2024

Examples

			a(17) = 653 since the sum of a(0) through a(16) is 65536, and eliminating repeated digits gives a(17) = A137564(65536) = 653.
		

Crossrefs

Cf. A371863 (records), A371864 (indices of records).

Programs

  • Mathematica
    seq={1};Do[s=Total[seq];AppendTo[seq,FromDigits[DeleteDuplicates[IntegerDigits[s]]]],43];seq (* James C. McMahon, Apr 09 2024 *)
  • PARI
    f(n) = my(d=digits(n)); fromdigits(vecextract(d, vecsort(vecsort(d, , 9)))) \\ A137564
    lista(nn) = my(va=vector(nn)); va[1] = 1; for (n=2, nn, va[n] = f(sum(j=1, n-1, va[j]));); va; \\ Michel Marcus, Mar 08 2024
    
  • Python
    from itertools import islice
    def A137564(n):
        seen, out, s = set(), "", str(n)
        for d in s:
            if d not in seen: out += d; seen.add(d)
        return int(out)
    def A370748gen(): # generator of terms
        an, s = 1, 0
        while True:
            yield an
            s += an
            an = A137564(s)
    print(list(islice(A370748gen(), 45))) # Michael S. Branicky, Apr 09 2024

A373696 a(n) is the least m >= 0 with the same number of digits as n such that for some permutation p of 0..9, applying p to the digits of n yields the digits of m.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10
Offset: 0

Views

Author

Rémy Sigrist, Aug 04 2024

Keywords

Comments

Leading zeros are ignored.
For n > 0, a(n) is the least m > 0 such that A358497(n) = A358497(m).
All positive terms belong to A266946.

Examples

			For n = 65507668: the different digits appearing in 65507668 are 6, 5, 0, 7 and 8; so we replace 6's by 1's, 5's by 0's, 0's by 2's, 7's by 3's and 8's by 4's, and a(65507668) = 10023114.
		

Crossrefs

Cf. A137564, A266946, A358497, A373712 (ternary analog).

Programs

  • PARI
    a(n, base = 10) = { my (d = digits(n, base), m = vector(base, i, -1), u = 1); for (i = 1, #d, if (m[1+d[i]] < 0, m[1+d[i]] = u; u = if (u==1, 0, u==0, 2, u+1);); d[i] = m[1+d[i]];); fromdigits(d, base); }

Formula

a(n) <= n with equality iff n = 0 or n belongs to A266946.
a(a(n)) = a(n).
Showing 1-7 of 7 results.