cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077947 Expansion of 1/(1 - x - x^2 - 2*x^3).

Original entry on oeis.org

1, 1, 2, 5, 9, 18, 37, 73, 146, 293, 585, 1170, 2341, 4681, 9362, 18725, 37449, 74898, 149797, 299593, 599186, 1198373, 2396745, 4793490, 9586981, 19173961, 38347922, 76695845, 153391689, 306783378, 613566757, 1227133513, 2454267026, 4908534053, 9817068105
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Number of sequences of codewords of total length n from the code C={0,10,110,111}. E.g., a(3)=5 corresponds to the sequences 000, 010, 100, 110 and 111. - Paul Barry, Jan 23 2004
In other words: number of compositions of n into 1 kind of 1's and 2's and two kinds of 3's. - Joerg Arndt, Jun 25 2011
Diagonal sums of number Pascal-(1,2,1) triangle A081577. - Paul Barry, Jan 24 2005
For n>0: a(n) = A173593(2*n+1) - A173593(2*n); a(n+1) = A173593(2*n) - A173593(2*n-1). - Reinhard Zumkeller, Feb 22 2010
Sums of 3 successive terms are powers of 2. - Mark Dols, Aug 20 2010
For n > 2, a(n) is the number of quaternary sequences of length n (i) starting with q(0)=0; (ii) ending with q(n-1)=0 or 3 and (iii) in which all triples (q(i), q(i+1), q(i+2)) contain digits 0 and 3; cf. A294627. - Wojciech Florek, Jul 30 2018

Examples

			It is shown in A294627 that there are 42 quaternary sequences (i.e. build from four digits 0, 1, 2, 3) and having both 0 and 3 in every (consecutive) triple. Only a(4) = 9 of them start with 0 and end with 0 or 3: 0030, 0033, 0130, 0230, 0300, 0303, 0310, 0320, 0330. - _Wojciech Florek_, Jul 30 2018
		

References

  • S. Roman, Introduction to Coding and Information Theory, Springer-Verlag, 1996, p. 42

Crossrefs

Apart from signs, same as A077972.
Cf. A139217 and A139218.
Cf. A078010.
Cf. A294627.

Programs

  • Magma
    [Round(2^(n+2)/7): n in [0..40]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    seq(round(2^(n+2)/7),n=0..25); # Mircea Merca, Dec 28 2010
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 - 2*x^3), {x, 0, 100}], x] (* or *) LinearRecurrence[{1, 1, 2}, {1, 1, 2}, 70] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
  • Maxima
    a(n):=sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(k-j),j,0,k),k,1,n); /* Vladimir Kruchinin, Sep 07 2010 */
    
  • PARI
    Vec(1/(1-x-x^2-2*x^3) + O(x^100)) \\ Altug Alkan, Oct 31 2015
    
  • Python
    def A077947(n): return (k:=(m:=1<=7) # Chai Wah Wu, Jan 21 2023

Formula

G.f.: 1/((1-2*x)*(1+x+x^2)).
a(n) = a(n-1)+a(n-2)+2*a(n-3). - Paul Curtz, May 23 2008
a(n) = round(2^(n+2)/7). - Mircea Merca, Dec 28 2010
a(n) = 4*2^n/7 + 3*cos(2*Pi*n/3)/7 + sqrt(3)*sin(2*Pi*n/3)/21. - Paul Barry, Jan 23 2004
Convolution of A000079 and A049347. a(n) = Sum_{k=0..n} 2^k*2*sqrt(3)*cos(2*Pi(n-k)/3+Pi/6)/3. - Paul Barry, May 19 2004
a(n) = sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(k-j),j,0,k),k,1,n), n>0. - Vladimir Kruchinin, Sep 07 2010
Partial sums of A078010 starting (1, 0, 1, 3, 4, 9, ...). - Gary W. Adamson, May 13 2013
a(n) = (1/14)*(2^(n + 3) + (-1)^n*((-1)^floor(n/3) + 4*(-1)^floor((n + 1)/3) + 2*(-1)^floor((n + 2)/3) + (-1)^floor((n + 4)/3))). - John M. Campbell, Dec 23 2016
a(n) = (1/63)*(9*2^(2 + n) + (-1)^n*(2 + 9*floor(n/6) - 32*floor((n + 5)/6) + 24*floor((n + 7)/6) + 20*floor((n + 8)/6) - 10*floor((n + 9)/6) - 27*floor((n + 10)/6) + 14*floor((n + 11)/6) + 3*floor((n + 13)/6) - 2*floor((n + 14)/6) + floor((n + 15)/6))). - John M. Campbell, Dec 23 2016
7*a(n) = 2^(n+2) + A167373(n+1). - R. J. Mathar, Feb 06 2020
a(n) = T(n+1) + 2*(a(1)*T(n-1) + a(2)*T(n-2) + ... + a(n-2)*T(2) + a(n-1)*T(1)) for T(n) = A000073(n), the tribonacci numbers. - Greg Dresden and Bora Bursalı, Sep 14 2023

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A122552 a(0)=a(1)=a(2)=1, a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.

Original entry on oeis.org

1, 1, 1, 4, 7, 13, 28, 55, 109, 220, 439, 877, 1756, 3511, 7021, 14044, 28087, 56173, 112348, 224695, 449389, 898780, 1797559, 3595117, 7190236, 14380471, 28760941, 57521884, 115043767, 230087533, 460175068, 920350135, 1840700269, 3681400540
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2006

Keywords

Comments

Equals INVERT transform of (1, 0, 3, 0, 3, 0, 3, ...). - Gary W. Adamson, Apr 27 2009
No term is divisible by 3. - Vladimir Joseph Stephan Orlovsky, Mar 24 2011
For n > 3, a(n) is the number of quaternary sequences of length n-1 starting with q(0) = 0, in which all triples (q(i), q(i+1), q(i+2)) contain digits 0 and 3; cf. A294627. - Wojciech Florek, Jul 30 2018
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and two colors of trominoes, with the restriction that the first tile cannot be a domino. - Greg Dresden and Bora Bursalı, Aug 31 2023

Examples

			It is shown in A294627 that there are 42 quaternary sequences (i.e., build from four digits 0, 1, 2, 3) and having both 0 and 3 in every (consecutive) triple. Only a(5=4+1) = 13 of them start with 0: 003x, 030x, 03y0, 0y30, 0330, where x = 0, 1, 2, 3 and y = 1, 2.
		

Crossrefs

Cf. A294627.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, Jul 30 2018
  • Maple
    seq(coeff(series((1-x^2)/(1-x-x^2-2*x^3), x,n+1),x,n),n=0..40); # Muniru A Asiru, Aug 02 2018
  • Mathematica
    LinearRecurrence[{1, 1, 2}, {1, 1, 1}, 40]
    CoefficientList[ Series[(x^2 - 1)/(2x^3 + x^2 + x - 1), {x, 0, 35}], x] (* Robert G. Wilson v, Jul 30 2018 *)
  • PARI
    Vec((1-x^2)/(1-x-x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(1,1,1,1,1,2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(3*n) = 2*a(3*n-1)+2, a(3*n+1) = 2*a(3*n)-1, a(3*n+2) = 2*a(3*n+1)-1, a(0)=1.
G.f.: (1-x^2)/(1-x-x^2-2*x^3).
a(n) = ((-1)^n*A130815(n+2) + 3*2^n)/7. - R. J. Mathar, Nov 30 2008
From Paul Curtz, Oct 02 2009: (Start)
a(n) = A140295(n+2)/4.
a(n+1) - 2a(n) = period 3: repeat -1,-1,2 = -A061347.
a(n) - a(n-1) = 0,0,3,3,6,15,27,54,111,... = 3*A077947.
a(n) - a(n-2) = 0,3,6,9,21,42,81,....
a(n) - a(n-3) = 3,6,12,24,... = A007283 = 3*A000079.
a(3n) + a(3n+1) + a(3n+2) = 3,24,192,... = A103333(n+1) = A140295(3n) + A140295(3n+1) + A140295(3n+2).
See A078010, A139217, A139218. (End)

Extensions

Corrected by T. D. Noe, Nov 01 2006, Nov 07 2006
Typo in definition corrected by Paul Curtz, Oct 02 2009

A139218 Smallest positive integer of the form 3k+2 such that all subsets of {a(1),...,a(n)} have a different sum.

Original entry on oeis.org

2, 5, 8, 14, 23, 41, 92, 179, 353, 716, 1427, 2849, 5708, 11411
Offset: 1

Views

Author

John W. Layman, Apr 11 2008

Keywords

Comments

(1) It appears that {a(n+1)-2a(n)} is eventually periodic, with values {1,-2,-2,-5,-5,10,-5,-5,10,-5,-5,10,-5,...}.
(2) See A139217 for the corresponding sequence using integers of the form 3k+1.
(3) M. F. Hasler, in a SeqFan memo dated Apr 09 2008, notes that the Jacobsthal sequence (A001045) from a(2) on (i.e., 1,3,5,11,21,...) gives the smallest positive odd integer such that all subsets of {a(2),...,a(n)} have a different sum.

Crossrefs

Formula

It appears that a(n) = a(n-1)+a(n-2)+2*a(n-3), for n>6.
Showing 1-3 of 3 results.