cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A112555 Triangle T, read by rows, such that the m-th matrix power satisfies T^m = I + m*(T - I) and consequently the matrix logarithm satisfies log(T) = T - I, where I is the identity matrix.

Original entry on oeis.org

1, 1, 1, -1, 0, 1, 1, 1, 1, 1, -1, -2, -2, 0, 1, 1, 3, 4, 2, 1, 1, -1, -4, -7, -6, -3, 0, 1, 1, 5, 11, 13, 9, 3, 1, 1, -1, -6, -16, -24, -22, -12, -4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, -1, -8, -29, -62, -86, -80, -50, -20, -5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, -1, -10, -46, -128, -239, -314, -296, -200, -95, -30, -6, 0
Offset: 0

Views

Author

Paul D. Hanna, Sep 21 2005

Keywords

Comments

Signed version of A108561. Row sums equal A084247. The n-th unsigned row sum = A001045(n) + 1 (Jacobsthal numbers). Central terms of even-indexed rows are a signed version of A072547. Sums of squared terms in rows yields A112556, which equals the first differences of the unsigned central terms.
Equals row reversal of triangle A112468 up to sign, where A112468 is the Riordan array (1/(1-x),x/(1+x)). - Paul D. Hanna, Jan 20 2006
The elements here match A108561 in absolute value, but the signs are crucial to the properties that the matrix A112555 exhibits; the main property being T^m = I + m*(T - I). This property is not satisfied by A108561. - Paul D. Hanna, Nov 10 2009
Eigensequence of the triangle = A140165. - Gary W. Adamson, Jan 30 2009
Triangle T(n,k), read by rows, given by [1,-2,0,0,0,0,0,0,0,...] DELTA [1,0,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 17 2009

Examples

			Triangle T begins:
   1;
   1,   1;
  -1,   0,   1;
   1,   1,   1,   1;
  -1,  -2,  -2,   0,   1;
   1,   3,   4,   2,   1,   1;
  -1,  -4,  -7,  -6,  -3,   0,   1;
   1,   5,  11,  13,   9,   3,   1,   1;
  -1,  -6, -16, -24, -22, -12,  -4,   0,   1;
   1,   7,  22,  40,  46,  34,  16,   4,   1,   1;
  -1,  -8, -29, -62, -86, -80, -50, -20,  -5,   0,   1;
  ...
Matrix log, log(T) = T - I, begins:
   0;
   1,  0;
  -1,  0,  0;
   1,  1,  1,  0;
  -1, -2, -2,  0,  0;
   1,  3,  4,  2,  1,  0;
  -1, -4, -7, -6, -3,  0,  0;
  ...
Matrix inverse, T^-1 = 2*I - T, begins:
   1;
  -1,  1;
   1,  0,  1;
  -1, -1, -1,  1;
   1,  2,  2,  0,  1;
  -1, -3, -4, -2, -1,  1;
  ...
where adjacent sums in row n of T^-1 gives row n+1 of T.
		

Crossrefs

From Philippe Deléham, Oct 07 2009: (Start)
Sum_{k=0..n} T(n, k)*x^(n-k) = A165760(n), A165759(n), A165758(n), A165755(n), A165752(n), A165746(n), A165751(n), A165747(n), A000007(n), A000012(n), A084247(n), A165553(n), A165622(n), A165625(n), A165638(n), A165639(n), A165748(n), A165749(n), A165750(n) for x= -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively.
Sum_{k=0..n} T(n, k)*x^k = A166157(n), A166153(n), A166152(n), A166149(n), A166036(n), A166035(n), A091004(n+1), A077925(n), A000007(n), A165326(n), A084247(n), A165405(n), A165458(n), A165470(n), A165491(n), A165505(n), A165506(n), A165510(n), A165511(n) for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. (End)

Programs

  • Mathematica
    Clear[t]; t[0, 0] = 1; t[n_, 0] = (-1)^(Mod[n, 2]+1); t[n_, n_] = 1; t[n_, k_] /; k == n-1 := t[n, k] = Mod[n, 2]; t[n_, k_] /; 0 < k < n-1 := t[n, k] = -t[n-1, k] - t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff( polcoeff( (1+2*x+x*y)/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff(1/(1-x*y) + m*x/((1-x*y)*(1+x+x*y)),n,X),k,Y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • Sage
    def A112555_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k+1)*prec(n+1, k) for k in (1..n+1)]
    for n in (0..12): print(A112555_row(n)) # Peter Luschny, Mar 16 2016

Formula

G.f.: 1/(1-x*y) + x/((1-x*y)*(1+x+x*y)).
The m-th matrix power T^m has the g.f.: 1/(1-x*y) + m*x/((1-x*y)*(1+x+x*y)).
Recurrence: T(n, k) = [T^-1](n-1, k) + [T^-1](n-1, k-1), where T^-1 is the matrix inverse of T.
From Peter Bala, Jun 23 2025: (Start)
T^z = exp(z*log(T)) = I + z*(T - I) for arbitrary complex z, where I is the identity array.
exp(T) = e*T. More generally, exp(z * T^u) = exp(z)*T^(u*z) = exp(z)*I + u*z*exp(z)*(T - I).
sin(z * T^u) = sin(z)*I + u*z*cos(z)*(T - I).
cos(z * T^u) = cos(z)*I - u*z*sin(z)*(T - I).
tan(z * T^u) = tan(z)*I + u*z*sec(z)^2*(T - I).
Chebyshev_T(n, T^u) = I + (n^2)*u*(T - I) and
Legendre_P(n, T^u) = I + (n*(n+1)/2)*u*(T - I).
More generally, for n >= 1,
Chebyshev_T(n, z*T^u) = Chebyshev_T(n, z)*I + n*u*z*Chebyshev_U(n-1, z)*(T - I) and
Legendre_P(n, z*T^u) = Legendre_P(n, z)*I + u*Q(n, z)*(T - I), where Q(1, z) = z and Q(n, z) = n*Legendre_P(n, z) + Q(n-1, z)/z for n > 1.
All the above properties may also hold for the triangle A279006. (End)

A140167 a(n) = (-1)*a(n-1) + 3*a(n-2) with a(1)=-1 and a(2)=1.

Original entry on oeis.org

-1, 1, -4, 7, -19, 40, -97, 217, -508, 1159, -2683, 6160, -14209, 32689, -75316, 173383, -399331, 919480, -2117473, 4875913, -11228332, 25856071, -59541067, 137109280, -315732481, 727060321, -1674257764, 3855438727, -8878212019, 20444528200
Offset: 1

Views

Author

Gary W. Adamson, May 10 2008

Keywords

Comments

A140165 is a companion sequence.

Examples

			a(5) = -19 = (-1)*7 + 3*(-4).
a(5) = -19 = term (1,2) of X^5 since X^5 = [ -2, -19; -19, -59].
		

Crossrefs

Programs

  • GAP
    a:=[-1,1];; for n in [3..30] do a[n]:= -a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019
  • Magma
    I:=[-1,1]; [n le 2 select I[n] else (-1)*Self(n-1) + 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 31 2015
    
  • Maple
    seq(coeff(series(-x/(1+x-3*x^2), x, n+1), x, n), n = 1..30); # G. C. Greubel, Dec 26 2019
  • Mathematica
    RecurrenceTable[{a[n]== -a[n-1]+3*a[n-2], a[1]== -1, a[2]==1}, a, {n,30}] (* G. C. Greubel, Aug 30 2015 *)
    Table[Round[-(-Sqrt[3])^(n-1)*(LucasL[n-1, 1/Sqrt[3]] + Fibonacci[n-1, 1/Sqrt[3] ]/Sqrt[3])/2], {n,30}] (* G. C. Greubel, Dec 26 2019 *)
  • PARI
    first(m)=my(v=vector(m));v[1]=-1;v[2]=1;for(i=3,m,v[i]=-v[i-1] + 3*v[i-2]); v \\ Anders Hellström, Aug 30 2015
    
  • Sage
    def A140167_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -x/(1+x-3*x^2) ).list()
    a=A140167_list(30); a[1:] # G. C. Greubel, Dec 26 2019
    

Formula

a(n) = (-1)*a(n-1) + 3*a(n-2), given a(1) = -1, a(2) = 1. a(n) = term (1,2) of X^n, where X = the 2x2 matrix [1,-1; -1,-2].
From R. J. Mathar, Dec 12 2009: (Start)
a(n) = (-1)^n*A006130(n-1).
G.f.: -x/(1+x-3*x^2). (End)
G.f.: -Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k-1 + 3*x)/( x*(4*k+1 + 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
E.g.f.: (1/sqrt(13))*(exp(-(1+sqrt(13))*x/2) - exp(-(1-sqrt(13))*x/2)). G. C. Greubel, Aug 30 2015
a(n) = -(-sqrt(3))^(n-1)*(Lucas(n-1, 1/sqrt(3)) + Fibonacci(n-1, 1/sqrt(3) )/sqrt(3))/2. - G. C. Greubel, Dec 26 2019

A274977 a(n) = a(n-1) + 3*a(n-2) with n>1, a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 9, 27, 54, 135, 297, 702, 1593, 3699, 8478, 19575, 45009, 103734, 238761, 549963, 1266246, 2916135, 6714873, 15463278, 35607897, 81997731, 188821422, 434814615, 1001278881, 2305722726, 5309559369, 12226727547, 28155405654, 64835588295, 149301805257, 343808570142
Offset: 0

Views

Author

Bruno Berselli, Sep 13 2016

Keywords

Comments

a(n)/a(n+1) converges to 1/A209927 as n approaches infinity.

Examples

			Table of similar sequences (not extendable on the left side) where this recurrence can be applied to the first two terms:
----------------------------------------------------------------------
(*)      -  -  1, -1,  2, -1,  5,   2,  17,  23,   74,  143,  365, ...
A052533: -  -  1,  0,  3,  3, 12,  21,  57, 120,  291,  651, 1524, ...
(^)      -  0, 1,  1,  4,  7, 19,  40,  97, 217,  508, 1159, 2683, ...
A006138: -  -  1,  2,  5, 11, 26,  59, 137, 314,  725, 1667, 3842, ...
A105476: -  -  1,  3,  6, 15, 33,  78, 177, 411,  942, 2175, 5001, ...
(^)      0, 1, 1,  4,  7, 19, 40,  97, 217, 508, 1159, 2683, 6160, ...
A105963: -  -  1,  5,  8, 23, 47, 116, 257, 605, 1376, 3191, 7319, ...
A274977: -  -  1,  6,  9, 27, 54, 135, 297, 702, 1593, 3699, 8478, ...
A075118: -  2, 1,  7, 10, 31, 61, 154, 337, 799, 1810, 4207, 9637, ...
----------------------------------------------------------------------
(*) see version A140165.
(^) see A006130 and the signed versions A140167, A182228.
		

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    [n le 2 select 5*n-4 else Self(n-1)+3*Self(n-2): n in [1..40]];
    
  • Magma
    R:=PowerSeriesRing(Integers(), 32); Coefficients(R!((1 + 5*x)/(1- x-3*x^2))); // Marius A. Burtea, Jan 15 2020
    
  • Maple
    seq(coeff(series((1+5*x)/(1-x-3*x^2), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 15 2020
  • Mathematica
    RecurrenceTable[{a[n]==a[n-1] +3a[n-2], a[0]==1, a[1]==6}, a, {n,0,40}]
    Table[Round[Sqrt[3]^(n-1)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 5*Fibonacci[n, 1/Sqrt[3]])], {n,0,40}] (* G. C. Greubel, Jan 15 2020 *)
    LinearRecurrence[{1,3},{1,6},40] (* Harvey P. Dale, Jul 11 2023 *)
  • PARI
    v=vector(40); v[1]=1; v[2]=6; for(n=3, #v, v[n]=v[n-1]+3*v[n-2]); v
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    a = recur_gen2(1, 6, 1, 3)
    [next(a) for n in range(40)]
    

Formula

G.f.: (1 + 5*x)/(1 - x - 3*x^2).
a(n) = ((13 + 11*sqrt(13))*(1 + sqrt(13))^n + (13 - 11*sqrt(13))*(1 - sqrt(13))^n)/(26*2^n).
3*a(n) + a(n+1) = 9*A105476(n+1).
3*a(n) - a(n+1) = 27*A006130(n-3) with n>1, A006130(-1) = 0.
a(n+1) - a(n) = 27*A105476(n-3) with n>2.
a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 5*Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020
E.g.f.: (1/13)*exp(x/2)*(13*cosh((sqrt(13)*x)/2) + 11*sqrt(13)*sinh((sqrt(13)*x)/2)). - Stefano Spezia, Jan 15 2020

A208343 Triangle of coefficients of polynomials v(n,x) jointly generated with A208342; see the Formula section.

Original entry on oeis.org

1, 0, 2, 0, 1, 3, 0, 1, 2, 5, 0, 1, 2, 5, 8, 0, 1, 2, 6, 10, 13, 0, 1, 2, 7, 13, 20, 21, 0, 1, 2, 8, 16, 29, 38, 34, 0, 1, 2, 9, 19, 39, 60, 71, 55, 0, 1, 2, 10, 22, 50, 86, 122, 130, 89, 0, 1, 2, 11, 25, 62, 116, 187, 241, 235, 144, 0, 1, 2, 12, 28, 75, 150, 267, 392, 468
Offset: 1

Views

Author

Clark Kimberling, Feb 25 2012

Keywords

Comments

u(n,n) = A000045(n+1) (Fibonacci numbers).
n-th row sum: 2^(n-1)
As triangle T(n,k) with 0 <= k <= n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012

Examples

			First five rows:
  1;
  0, 2;
  0, 1, 3;
  0, 1, 2, 5;
  0, 1, 2, 5, 8;
First five polynomials v(n,x):
  1
     2x
      x + 3x^2
      x + 2x^2 + 5x^3
      x + 2x^2 + 5x^3 + 8x^4.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208342 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208343 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 26 2012: (Start)
As triangle T(n,k) with 0 <= k <= n:
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k > n or if k < 0.
G.f.: (1-(1-y)*x)/(1-(1+y)*x+y*(1-y)*x^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)*A091003(n+1), A152166(n), A000007(n), A000079(n), A055099(n), A152224(n) for x = -2, -1, 0, 1, 2, 3 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A087205(n), A140165(n+1), A016116(n+1), A000045(n+2), A000079(n), A122367(n), A006012(n), A052961(n), A154626(n) for x = -3, -2, -1, 0, 1, 2, 3, 4 respectively. (End)
T(n,k) = A208748(n,k)/2^k. - Philippe Deléham, Mar 05 2012

A176737 Expansion of 1 / (1-4*x^2-3*x^3). (4,3)-Padovan sequence.

Original entry on oeis.org

1, 0, 4, 3, 16, 24, 73, 144, 364, 795, 1888, 4272, 9937, 22752, 52564, 120819, 278512, 640968, 1476505, 3399408, 7828924, 18027147, 41513920, 95595360, 220137121, 506923200, 1167334564, 2688104163, 6190107856, 14254420344, 32824743913, 75588004944, 174062236684
Offset: 0

Views

Author

Wolfdieter Lang, Jun 26 2010

Keywords

Comments

See A000931 (Padovan), and the W. Lang link given there.

Crossrefs

Cf. A053088 ((3,2)-Padovan).

Programs

  • Mathematica
    CoefficientList[Series[1/(1-4*x^2-3*x^3),{x,0,40}],x] (* or *) LinearRecurrence[ {0,4,3},{1,0,4},40] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    Vec(1 / ((1 + x)*(1 - x - 3*x^2)) + O(x^40)) \\ Colin Barker, Dec 25 2017

Formula

O.g.f.: 1/((1-x-3*x^2)*(1+x)) = (2-3*x)/(1-x-3*x^2) -1/(1+x).
a(n) = 2*b(n) - 3*b(n-1) - (-1)^n, n>=0, with b(n):=A006130(n) ((1,3)-Fibonacci), b(-1):=0.
From Wolfdieter Lang, Aug 26 2010: (Start)
a(n) = a(n-1) + 3*a(n-2) + (-1)^n, n>=2, a(0)=1, a(1)=0.
Due to the identity for the o.g.f. A(x): A(x)= x*(1 + 3*x)*A(x) + 1/(1+x).
(This recurrence was observed by Gary Detlefs in an Aug 24 2010 email to the author.)
(End)
a(n) = 4*a(n-2) + 3*a(n-3) for n>2. - Harvey P. Dale, Jan 21 2013
a(n) = (-1)^(n+1)*A140165(n+2)-(-1)^n. - R. J. Mathar, Apr 22 2013
a(n) = ((-1)^(1+n) + (2^(-n)*((-2+sqrt(13))*(1+sqrt(13))^n + (1-sqrt(13))^n*(2+sqrt(13)))) / sqrt(13)). - Colin Barker, Dec 25 2017

A140166 Triangle read by rows, iterates of X * [1,0,0,0,...]; where X = an infinite bidiagonal matrix with [1,-2,1,-2,1,...] in the main diagonal, [1,1,1,...] in the subdiagonal and the rest zeros.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, 3, 0, 1, 1, -5, 3, -2, 1, 1, 11, -2, 7, -1, 1, 1, -21, 9, -16, 6, -3, 1, 1, 43, -12, 41, -10, 12, -2, 1, 1, -85, 31, -94, 31, -34, 10, -4, 1, 1, 171, -54, 219, -63, 99, -24, 18, -3, 1
Offset: 1

Views

Author

Gary W. Adamson, May 10 2008

Keywords

Comments

Row sums = A140165

Examples

			First few rows of the triangle are:
1;
1, 1;
1, -1, 1;
1, 3, 0, 1;
1, -5, 3, -2, 1;
1, 11, -2, 7, -1, 1;
1, -21, 9, -16, 6, -3, 1;
1, 43, -12, 41, -10, 12, -2, 1;
1, -85, 31, -94, 31, -34, 10, -4, 1;
...
		

Crossrefs

Formula

Triangle read by rows, iterates of X * [1,0,0,0,...]; where X = an infinite bidiagonal matrix with [1,-2,1,-2,1,...] in the main diagonal, [1,1,1,...] in the subdiagonal and the rest zeros.
Showing 1-6 of 6 results.