cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A015448 a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.

Original entry on oeis.org

1, 1, 5, 21, 89, 377, 1597, 6765, 28657, 121393, 514229, 2178309, 9227465, 39088169, 165580141, 701408733, 2971215073, 12586269025, 53316291173, 225851433717, 956722026041, 4052739537881, 17167680177565, 72723460248141, 308061521170129, 1304969544928657, 5527939700884757
Offset: 0

Views

Author

Keywords

Comments

If one deletes the leading 0 in A084326, takes the inverse binomial transform, and adds a(0)=1 in front, one obtains this sequence here. - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
For n >= 1, row sums of triangle
m |k=0 1 2 3 4 5 6 7
====+=============================================
0 | 1
1 | 1 4
2 | 1 4 16
3 | 1 8 16 64
4 | 1 8 48 64 256
5 | 1 12 48 256 256 1024
6 | 1 12 96 256 1280 1024 4096
7 | 1 16 96 640 1280 6144 4096 16384
which is triangle for numbers 4^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) = a(n;-2) = 3^n*Sum_{k=0..n} binomial(n,k)*F(k+1)*(-2/3)^k, where a(n;d), n=0,1,...,d, denotes the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). We note that (see A033887) F(3n+1) = 3^n*a(n,2/3) = Sum_{k=0..n} binomial(n,k)*F(k-1)*(-2/3)^k, which implies F(3n+1) + 3^(-n)*a(n) = Sum_{k=0..n} binomial(n,k)*L(k)*(-2/3)^k, where L(k) denotes the k-th Lucas number. - Roman Witula, Jul 12 2012
a(n+1) is (for n >= 0) the number of length-n strings of 5 letters {0,1,2,3,4} with no two adjacent nonzero letters identical. The general case (strings of L letters) is the sequence with g.f. (1+x)/(1-(L-1)*x-x^2). - Joerg Arndt, Oct 11 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 4, 4*3, 4*3^2, 4*3^3, ...); i.e., of A003946: (1, 4, 12, 36, 108, ...). - Gary W. Adamson, Aug 06 2016
a(n+1) equals the number of quinary sequences of length n such that no two consecutive terms differ by 3. - David Nacin, May 31 2017

Crossrefs

Cf. A001076, A147722 (INVERT transform), A109499 (INVERTi transform), A154626 (Binomial transform), A086344 (inverse binomial transform), A003946, A049310.

Programs

Formula

a(n) = Fibonacci(3n-1) = ( (1+sqrt(5))*(2-sqrt(5))^n - (1-sqrt(5))*(2+sqrt(5))^n )/ (2*sqrt(5)).
O.g.f.: (1-3*x)/(1-4*x-x^2). - Len Smiley, Dec 09 2001
a(n) = Sum_{k=0..n} 3^k*A055830(n,k). - Philippe Deléham, Oct 18 2006
a(n) = upper left term in the 2 X 2 matrix [1,2; 2,3]^n. - Gary W. Adamson, Mar 02 2008
[a(n), A001076(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = A167808(3*n-1) for n > 0. - Reinhard Zumkeller, Nov 12 2009
a(n) = Fibonacci(3n+1) mod Fibonacci(3n), n > 0.
a(n) = (A000032(3*n)-Fibonacci(3*n))/2 = (A014448(n)-A014445(n))/2.
For n >= 2, a(n) = F_n(4) + F_(n+1)(4), where F_n(x) is a Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)*x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(n) = A001076(n+1) - 3*A001076(n). - R. J. Mathar, Jul 12 2012
From Gary Detlefs and Wolfdieter Lang, Aug 20 2012: (Start)
a(n) = (5*F(n)^3 + 5*F(n-1)^3 + 3*(-1)^n*F(n-2))/2,
a(n) = (F(n+1)^3 + 2*F(n)^3 - F(n-2)^3)/2, n >= 0, with F(-1) = 1 and F(-2) = -1. Second line from first one with 3*(-1)^n* F(n-2) = F(n-1)^3 - 4*F(n-2)^3 - F(n-3)^3 (in Koshy's book, p. 89, 32. (with a - sign) and 33. For the Koshy reference see A000045) and the F^3 recurrence (see row n=4 of A055870, or Koshy p. 87, 1.). First line from the preceding R. J. Mathar formula with F(3*n) = 5*F(n)^3 + 3*(-1)^n*F(n) (Koshy p. 89, 46.) and the above mentioned formula, Koshy's 32. and 33., with n -> n+2 in order to eliminate F(n+1)^3. (End)
For n > 0, a(n) = L(n-1)*L(n)*F(n) + F(n+1)*(-1)^n with L(n)=A000032(n). - J. M. Bergot, Dec 10 2015
For n > 1, a(n)^2 is the denominator of continued fraction [4,4,...,4, 6, 4,4,...4], which has n-1 4's before, and n-1 4's after, the middle 6. - Greg Dresden, Sep 18 2019
From Gary Detlefs and Wolfdieter Lang, Mar 06 2023: (Start)
a(n) = A001076(n) + A001076(n-1), with A001076(-1) = 1. See the R. J. Mathar formula above.
a(n+1) = i^n*(S(n-1,-4*i) - i*S(n-2,-4*i)), for n >= 0, with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. From the simplified Fibonacci trisection formula for {F(3*n+2)}_{n>=0}. (End)
a(n) = Sum_{k=0..n} A046854(n-1,k)*4^k. - R. J. Mathar, Feb 10 2024
E.g.f.: exp(2*x)*(5*cosh(sqrt(5)*x) - sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Jun 03 2024

A203378 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

12, 36, 36, 108, 164, 108, 324, 748, 748, 324, 972, 3412, 5208, 3412, 972, 2916, 15564, 36300, 36300, 15564, 2916, 8748, 70996, 253068, 387324, 253068, 70996, 8748, 26244, 323852, 1764360, 4136292, 4136292, 1764360, 323852, 26244, 78732, 1477268
Offset: 1

Views

Author

R. H. Hardin Dec 31 2011

Keywords

Comments

Table starts
....12......36......108........324..........972...........2916.............8748
....36.....164......748.......3412........15564..........70996...........323852
...108.....748.....5208......36300.......253068........1764360.........12301020
...324....3412....36300.....387324......4136292.......44183028........471988172
...972...15564...253068....4136292.....67731264.....1109832180......18189909480
..2916...70996..1764360...44183028...1109832180....27913330472.....702420750924
..8748..323852.12301020..471988172..18189909480...702420750924...27149753088792
.26244.1477268.85762188.5042151644.298154846436.17679917387404.1049837466171436

Examples

			Some solutions for n=4 k=3
..0..0..1..0....1..0..1..1....1..1..0..0....1..1..1..1....1..0..0..0
..0..1..1..1....0..1..1..0....1..1..1..0....1..1..0..1....0..1..0..0
..1..0..1..1....0..0..1..1....1..0..1..1....0..1..1..1....1..0..1..0
..1..1..0..1....1..0..0..1....0..1..1..1....1..1..0..1....1..1..1..1
..1..1..1..1....0..1..0..0....0..0..1..1....1..0..0..0....1..1..0..1
		

Crossrefs

Column 1 is A003946(n+1)
Column 2 is A147722(n+2)

A147720 Riordan array (1, x(1-x)/(1-3x)).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 18, 16, 6, 1, 0, 54, 60, 30, 8, 1, 0, 162, 216, 134, 48, 10, 1, 0, 486, 756, 558, 248, 70, 12, 1, 0, 1458, 2592, 2214, 1168, 410, 96, 14, 1, 0, 4374, 8748, 8478, 5160, 2150, 628, 126, 16
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Array [0,2,1,0,0,0,....] DELTA [1,0,0,0,......] for Deléham DELTA as in A084938.
Row sums are A001835. Diagonal sums are related to A030186.
Row sums of inverse are essentially A091593. A147720*A007318 is A147721.

Examples

			Triangle begins
1;
0,   1;
0,   2,   1;
0,   6,   4,   1;
0,  18,  16,   6,   1;
0,  54,  60,  30,   8,   1;
0, 162, 216, 134,  48,  10,   1;
		

Programs

  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1-3*x)/(1-(3+y)*x+y*x^2), {x, 0, nmax}],x],{y,0,nmax}],y]] (* Indranil Ghosh, Mar 10 2017, after Philippe Deléham *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001835(n), A147722(n), A084120(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Nov 15 2008
G.f.: (1-3*x)/(1-(3+y)*x+y*x^2). - Philippe Deléham, Feb 15 2012

A147721 a(n) = C(2,n) DELTA C(0,n).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 17, 7, 1, 41, 72, 40, 10, 1, 153, 301, 208, 72, 13, 1, 571, 1244, 1021, 446, 113, 16, 1, 2131, 5093, 4819, 2525, 813, 163, 19, 1, 7953, 20688, 22104, 13452, 5218, 1336, 222, 22, 1, 29681, 83481, 99192, 68568, 30986, 9586, 2042, 290, 25, 1
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Triangle T equal to [1,2,1,0,0,0,...] DELTA [1,0,0,0,...] for Deléham DELTA as in A084938.
T = A147720*A007318. Row sums are A147722.

Examples

			Triangle begins
    1;
    1,   1;
    3,   4,   1;
   11,  17,   7,   1;
   41,  72,  40,  10,   1;
  153, 301, 208,  72,  13,   1;
		

Crossrefs

Programs

  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 3*x)/(1 - 4*x + (1 + y)*x^2 - y*x), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017, after Philippe Deléham *)

Formula

Riordan array ((1-3x)/(1-4x+x^2), x(1-x)/(1-4x+x^2)).
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), n > 1. - Philippe Deléham, Feb 13 2012
G.f.: (1-3*x)/(1-4*x+(1+y)*x^2-y*x). - Philippe Deléham, Feb 13 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001835(n), A147722(n), A084120(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Feb 13 2012

A249581 List of quadruples (r,s,t,u): the matrix M = [[9,24,16][3,10,8][1,4,4]] is raised to successive powers, then (r,s,t,u) are the square roots of M[3,1], M[3,3], M[1,1], M[1,3] respectively.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 3, 4, 5, 8, 13, 20, 23, 36, 59, 92, 105, 164, 269, 420, 479, 748, 1227, 1916, 2185, 3412, 5597, 8740, 9967, 15564, 25531, 39868, 45465, 70996, 116461, 181860, 207391, 323852, 531243, 829564, 946025, 1477268, 2423293, 3784100
Offset: 0

Views

Author

Russell Walsmith, Nov 03 2014

Keywords

Comments

The general form of these matrices is [[t^2,2tu,u^2][rt,st+ru,su][r^2,2rs,s^2]]. Different symmetries have different properties.
Iff |r * u - s * t| = 1 then terms to the left of a(0) are all integers.

Examples

			M^0 = [[1,0,0][0,1,0][0,0,1]]. r = sqrt(M[3,1]) = a(0) = 0; s = sqrt(M[3,3]) = a(1) = 1; t = sqrt(M[1,1]) = a(2) = 1; u = sqrt(M[1,3]) = a(3) = 0.
M^1 = [[9,24,16][3,10,8][1,4,4]]. r = sqrt(M[3,1]) = a(4) = 1; s = sqrt(M[3,3]) = a(5) = 2; t = sqrt(M[1,1]) = a(6) = 3; u = sqrt(M[1,3]) = a(7) = 4.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,5,0,0,0,-2},{0,1,1,0,1,2,3,4},50] (* Harvey P. Dale, Aug 01 2016 *)
  • PARI
    concat(0, Vec(x*(4*x^6-2*x^5-3*x^4+x^3+x+1)/(2*x^8-5*x^4+1) + O(x^100))) \\ Colin Barker, Nov 04 2014

Formula

a(4n) + a(4n + 1) = a(4n + 2).
a(4n + 1) + a(4n + 2) + a(4n + 3) - a(4n) = a(4n + 5)
4a(4n) = a(4n+3).
a(4n+1) = A147722(n), a(4n+2) = A052984(n).
a(n) = 5*a(n-4)-2*a(n-8). - Colin Barker, Nov 04 2014
G.f.: x*(4*x^6-2*x^5-3*x^4+x^3+x+1) / (2*x^8-5*x^4+1). - Colin Barker, Nov 04 2014
Showing 1-5 of 5 results.