A169452 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4) )); // G. C. Greubel, May 01 2019 -
Maple
gf:= (t+1) *(t^2+t+1) *(t^10+t^9+t^8+t^7+t^6+t^5+t^4+t^3+t^2+t+1) *(t^20-t^19+t^17-t^16 +t^14-t^13+t^11-t^10+t^9-t^7+t^6-t^4+t^3- t+1) / (15*t^33-5*t^32-5*t^31-5*t^30-5*t^29 -5*t^28-5*t^27 -5*t^26-5*t^25 -5*t^24 -5*t^23-5*t^22-5*t^21-5*t^20 -5*t^19-5*t^18-5*t^17 -5*t^16 -5*t^15 -5*t^14-5*t^13-5*t^12-5*t^11-5*t^10-5*t^9-5*t^8-5*t^7 -5*t^6 -5*t^5-5*t^4 -5*t^3-5*t^2-5*t+1): S:= series(gf,t,101): seq(coeff(S,t,j),j=0..100); # Robert Israel, Aug 26 2014
-
Mathematica
coxG[{pwr_,c1_,c2_,trms_:20}]:=Module[{num=Total[2t^Range[pwr-1]]+t^pwr+ 1, den =Total[c2*t^Range[pwr-1]]+c1*t^pwr+1},CoefficientList[ Series[ num/den,{t,0,trms}],t]]; coxG[{33,15,-5,30}] (* "pwr" is the largest exponent in the g.f.; "c1" is the first coefficient in the denominator of the g.f.; "c2" is the second coefficient in the denominator of the g.f.; "trms" is the number of terms desired (with a default number of 20) *) (* Harvey P. Dale, Aug 16 2014 *) CoefficientList[Series[(1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34), {x,0,25}], x] (* G. C. Greubel, May 01 2019 *)
-
PARI
my(x='x+O('x^25)); Vec((1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34)) \\ G. C. Greubel, May 01 2019
-
Sage
((1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34)).series(x, 25).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
Formula
G.f.: (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^33 - 5*t^32 - 5*t^31 - 5*t^30 - 5*t^29 - 5*t^28 - 5*t^27 - 5*t^26 - 5*t^25 - 5*t^24 - 5*t^23 - 5*t^22 - 5*t^21 - 5*t^20 - 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).
G.f.: (1+x)*(1-x^33)/(1 - 6*x + 20*x^33 - 15*x^34). - G. C. Greubel, May 01 2019
a(n) = -15*a(n-33) + 5*Sum_{k=1..32} a(n-k). - Wesley Ivan Hurt, May 06 2021
Comments