cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055998 a(n) = n*(n+5)/2.

Original entry on oeis.org

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0

Views

Author

Barry E. Williams, Jun 14 2000

Keywords

Comments

If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.

Programs

Formula

G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000217(n) + A005843(n). - Reinhard Zumkeller, Sep 24 2008
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
a(n) = A034856(n+1) - 1 = A000217(n+2) - 3. - Jaroslav Krizek, Sep 05 2009
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = 3*A000217(n) - 2*A000217(n-1). - Bruno Berselli, Dec 17 2014
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)

A051938 Truncated triangular numbers: a(n) = n*(n+1)/2 - 18.

Original entry on oeis.org

3, 10, 18, 27, 37, 48, 60, 73, 87, 102, 118, 135, 153, 172, 192, 213, 235, 258, 282, 307, 333, 360, 388, 417, 447, 478, 510, 543, 577, 612, 648, 685, 723, 762, 802, 843, 885, 928, 972, 1017, 1063, 1110, 1158, 1207, 1257, 1308, 1360, 1413, 1467, 1522, 1578
Offset: 6

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 21 1999

Keywords

Comments

If a 3-set Y and a 3-set Z, having one element in common, are subsets of an n-set X then a(n+2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007

Crossrefs

a(n) = A000217(n) - 18 for n>5.
Cf. A155212. - Vincenzo Librandi, Jan 22 2009

Programs

  • Mathematica
    Drop[Accumulate[Range[60]]-18,5] (* Harvey P. Dale, Dec 08 2017 *)
  • PARI
    Vec(x^6*(3*x^2-x-3)/(x-1)^3 + O(x^100)) \\ Colin Barker, Mar 18 2015

Formula

a(n) = n + a(n-1) (with a(6)=3). - Vincenzo Librandi, Aug 06 2010
G.f.: x^6*(3*x^2-x-3) / (x-1)^3. - Colin Barker, Mar 18 2015
Sum_{n>=6} 1/a(n) = 4423/6120 + 2*Pi*tan(sqrt(145)*Pi/2)/sqrt(145). - Amiram Eldar, Dec 13 2022

A237519 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the partial sums of the column k of A237273 starting in row k^2.

Original entry on oeis.org

1, 4, 8, 13, 2, 19, 2, 26, 7, 34, 7, 43, 13, 53, 13, 3, 64, 20, 3, 76, 20, 3, 89, 28, 10, 103, 28, 10, 118, 37, 10, 134, 37, 18, 151, 47, 18, 4, 169, 47, 18, 4, 188, 58, 27, 4, 208, 58, 27, 4, 229, 70, 27, 13, 251, 70, 37, 13, 274, 83, 37, 13, 298, 83, 37, 13, 323, 97, 48, 23, 349, 97, 48, 23, 5
Offset: 1

Views

Author

Omar E. Pol, Feb 08 2014

Keywords

Comments

The sum of row n is A024916(n), the sum of all divisors of all positive integers <= n.
Row n has length A000196(n).
Column 1 is A034856.
Column 2 lists the elements of A155212 repeated.
Column 3 lists the elements of A051938 repeated with three copies of every element.
Column k contains k copies of every element.

Examples

			Triangle begins:
1;
4;
8;
13,   2;
19,   2;
26,   7;
34,   7;
43,  13;
53,  13,  3;
64,  20,  3;
76,  20,  3;
89,  28, 10;
103, 28, 10;
118, 37, 10;
134, 37, 18;
151, 47, 18,  4;
169, 47, 18,  4;
188, 58, 27,  4;
208, 58, 27,  4;
229, 70, 27, 13;
251, 70, 37, 13;
274, 83, 37, 13;
298, 83, 37, 13;
323, 97, 48, 23;
349, 97, 48, 23,  5;
...
		

Crossrefs

A356754 Triangle read by rows: T(n,k) = ((n-1)*(n+2))/2 + 2*k.

Original entry on oeis.org

2, 4, 6, 7, 9, 11, 11, 13, 15, 17, 16, 18, 20, 22, 24, 22, 24, 26, 28, 30, 32, 29, 31, 33, 35, 37, 39, 41, 37, 39, 41, 43, 45, 47, 49, 51, 46, 48, 50, 52, 54, 56, 58, 60, 62, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87
Offset: 1

Views

Author

Torlach Rush, Aug 25 2022

Keywords

Comments

The first column of the triangle is the Lazy Caterer's sequence A000124.
Each subsequent column starts with A000124(n) + (2 * (n-1)).
The first downward diagonal is A046691(n).
Columns and downward diagonals of the triangle identify many sequences (possibly shifted) in the database. Examples can be found in crossrefs below.
The sum of the n-th upward diagonal of the triangle is A356288(n).

Examples

			Triangle T(n,k) begins:
  n\k   1   2   3   4   5   6   7   8   9  10  11  ...
   1:   2
   2:   4   6
   3:   7   9  11
   4:  11  13  15  17
   5:  16  18  20  22  24
   6:  22  24  26  28  30  32
   7:  29  31  33  35  37  39  41
   8:  37  39  41  43  45  47  49  51
   9:  46  48  50  52  54  56  58  60  62
  10:  56  58  60  62  64  66  68  70  72  74
  11:  67  69  71  73  75  77  79  81  83  85  87
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[((n-1)(n+2))/2+2k,{n,20},{k,n}]//Flatten (* Harvey P. Dale, May 26 2023 *)
  • Python
    def T(n, k): return ((n-1) * (n+2))//2 + 2*k
    for n in range(1, 12):
        for k in range(1,(n+1)): print(T(n,k), end = ', ')
    
  • Python
    # Indexed as a linear sequence.
    def a000124(n): return n*(n+1)//2 + 1
    def a(n):
        l = m = 0
        for k in range(1,n):
            lc = a000124(k - 1)
            if n >= lc:
                l = lc
                m = k
            else: break
        return n + m + (n - l)

Formula

T(n,k) = ((n-1) * (n+2))/2 + 2*k.
T(n,k+1) = T(n,k) + 2, k < n.
Showing 1-4 of 4 results.