A135351
a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; or a(0) = 0 and for n > 0, a(n) = A005578(n-1) - (-1)^n.
Original entry on oeis.org
0, 2, 0, 3, 2, 7, 10, 23, 42, 87, 170, 343, 682, 1367, 2730, 5463, 10922, 21847, 43690, 87383, 174762, 349527, 699050, 1398103, 2796202, 5592407, 11184810, 22369623, 44739242, 89478487, 178956970, 357913943, 715827882, 1431655767, 2863311530, 5726623063, 11453246122, 22906492247, 45812984490
Offset: 0
-
List([0..40], n-> (2^n+3-7*(-1)^n+3*0^n)/6); # G. C. Greubel, Sep 02 2019
-
a135351:=func< n | (2^n+3-7*(-1)^n+3*0^n)/6 >; [ a135351(n): n in [0..32] ]; // Klaus Brockhaus, Dec 05 2009
-
G(x):=x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)): f[0]:=G(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/n!,n=0..30);
-
Join[{0}, Table[(2^n +3 -7*(-1)^n)/6, {n,40}]] (* G. C. Greubel, Oct 11 2016 *)
LinearRecurrence[{2,1,-2},{0,2,0,3},40] (* Harvey P. Dale, Feb 13 2024 *)
-
a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; \\ Michel Marcus, Oct 11 2016
-
[(2^n+3-7*(-1)^n+3*0^n)/6 for n in (0..40)] # G. C. Greubel, Sep 02 2019
A171382
a(n) = (2*2^n+7*(-1)^n)/3.
Original entry on oeis.org
3, -1, 5, 3, 13, 19, 45, 83, 173, 339, 685, 1363, 2733, 5459, 10925, 21843, 43693, 87379, 174765, 349523, 699053, 1398099, 2796205, 5592403, 11184813, 22369619, 44739245, 89478483, 178956973, 357913939, 715827885, 1431655763, 2863311533
Offset: 0
-
[ (2*2^n+7*(-1)^n)/3: n in [0..32] ];
-
Nest[Append[#,Last[#]+2#[[-2]]]&,{3,-1},40] (* Harvey P. Dale, Apr 07 2011 *)
A321358
a(n) = (2*4^n + 7)/3.
Original entry on oeis.org
3, 5, 13, 45, 173, 685, 2733, 10925, 43693, 174765, 699053, 2796205, 11184813, 44739245, 178956973, 715827885, 2863311533, 11453246125, 45812984493, 183251937965, 733007751853, 2932031007405, 11728124029613, 46912496118445, 187649984473773, 750599937895085, 3002399751580333
Offset: 0
-
a[n_]:= (2*4^n + 7)/3; Array[a, 20, 0] (* or *)
CoefficientList[Series[1/3 (7 E^x + 2 E^(4 x)), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 10 2018 *)
-
a(n) = (2*4^n + 7)/3; \\ Michel Marcus, Nov 08 2018
-
Vec((3 - 10*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 10 2018
A307688
a(n) = 2*a(n-1)-2*a(n-2)+a(n-3)+2*a(n-4) with a(0)=a(1)=0, a(2)=2, a(3)=3.
Original entry on oeis.org
0, 0, 2, 3, 2, 0, 3, 14, 26, 27, 22, 44, 123, 234, 310, 363, 586, 1224, 2259, 3382, 4642, 7227, 13070, 23092, 36555, 54450, 85022, 143883, 245282, 396720, 616803, 973214, 1600106, 2664027, 4334662, 6887804, 10970523, 17828154, 29272390, 47634603, 76493626
Offset: 0
-
a[0] = a[1] = 0; a[2] = 2; a[3] = 3; a[n_] := a[n] = 2*a[n-1] - 2*a[n-2] + a[n-3] + 2*a[n-4]; Table[a[n], {n, 0, 40}]
LinearRecurrence[{2,-2,1,2},{0,0,2,3},50] (* Harvey P. Dale, Oct 01 2021 *)
-
concat([0,0], Vec(x^2*(2 - x) / ((1 - x - x^2)*(1 - x + 2*x^2)) + O(x^40))) \\ Colin Barker, Apr 22 2019
A340660
A000079 is the first row. For the second row, subtract A001045. For the third row, subtract A001045 from the second one, etc. The resulting array is read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 1, 0, 3, 8, 1, -1, 2, 5, 16, 1, -2, 1, 2, 11, 32, 1, -3, 0, -1, 6, 21, 64, 1, -4, -1, -4, 1, 10, 43, 128, 1, -5, -2, -7, -4, -1, 22, 85, 256, 1, -6, -3, -10, -9, -12, 1, 42, 171, 512, 1, -7, -4, -13, -14, -23, -20, -1, 86, 341, 1024
Offset: 0
Square array:
1, 2, 4, 8, 16, 32, 64, 128, ... = A000079(n)
1, 1, 3, 5, 11, 21, 43, 85, ... = A001045(n+1)
1, 0, 2, 2, 6, 10, 22, 42, ... = A078008(n)
1, -1, 1, -1, 1, -1, 1, -1, ... = A033999(n)
1, -2, 0, -4, -4, -12, -20, -44, ... = -A084247(n)
1, -3, -1, -7, -9, -23, -41, -87, ... = (-1)^n*A140966(n+1)
1, -4, -2, -10, -14, -34, -62, -130, ... = -A135440(n)
1, -5, -3, -13, -19, -45, -83, -173, ... = -A155980(n+3) or -A171382(n+1)
...
-
A:= (n, k)-> (<<0|1>, <2|1>>^k. <<1, 2-n>>)[1$2]:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 21 2021
-
A340660[m_, n_] := LinearRecurrence[{1, 2}, {1, m}, {n}]; Table[Reverse[Table[A340660[m, n + m - 2] // First, {m, 2, -n + 3, -1}]], {n, 1, 11}] // Flatten (* Robert P. P. McKone, Jan 28 2021 *)
-
T(n, k) = 2^k - n*(2^k - (-1)^k)/3;
matrix(10,10,n,k,T(n-1,k-1)) \\ Michel Marcus, Jan 19 2021
A366987
Triangle read by rows: T(n, k) = -(2^(n - k)*(-1)^n + 2^k + (-1)^k)/3.
Original entry on oeis.org
-1, 0, 0, -2, -1, -2, 2, 1, -1, -2, -6, -3, -3, -3, -6, 10, 5, 1, -1, -5, -10, -22, -11, -7, -5, -7, -11, -22, 42, 21, 9, 3, -3, -9, -21, -42, -86, -43, -23, -13, -11, -13, -23, -43, -86, 170, 85, 41, 19, 5, -5, -19, -41, -85, -170, -342, -171, -87, -45, -27, -21, -27, -45, -87, -171, -342
Offset: 0
Triangle T(n, k) starts:
-1
0 0
-2 -1 -2
2 1 -1 -2
-6 -3 -3 -3 -6
10 5 1 -1 -5 -10
-22 -11 -7 -5 -7 -11 -22
42 21 9 3 -3 -9 -21 -42
...
Note the symmetrical distribution of the absolute values of the terms in each row.
First column: -(-1)^n *
A078008(n).
Second column: (-1)^n *
A001045(n).
Fourth column: (-1)^n *
A155980(n+2).
-
T := (n, k) -> -(2^(n-k)*(-1)^n + 2^k + (-1)^k)/3:
seq(seq(T(n, k), k = 0..n), n = 0..10); # Peter Luschny, Nov 02 2023
-
A366987row[n_]:=Table[-(2^(n-k)(-1)^n+2^k+(-1)^k)/3,{k,0,n}];Array[A366987row,15,0] (* Paolo Xausa, Nov 07 2023 *)
-
T(n, k) = (-2^(k+1) + 2*(-1)^(k+1) + (-1)^(n+1)*2^(1+n-k))/6 \\ Thomas Scheuerle, Nov 01 2023
Showing 1-6 of 6 results.
Comments