cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A176691 a(n) = 2^n + 2*n + 1.

Original entry on oeis.org

2, 5, 9, 15, 25, 43, 77, 143, 273, 531, 1045, 2071, 4121, 8219, 16413, 32799, 65569, 131107, 262181, 524327, 1048617, 2097195, 4194349, 8388655, 16777265, 33554483, 67108917, 134217783, 268435513, 536870971, 1073741885, 2147483711, 4294967361, 8589934659, 17179869253
Offset: 0

Views

Author

Jonathan Vos Post, Apr 23 2010

Keywords

Comments

The subsequence of primes in this sequence is A163115.
Also the number of connected dominating sets in the (n+1)-wheel graph. - Eric W. Weisstein, Aug 30 2017

Crossrefs

Programs

Formula

a(n) = 2^n + 2*n + 1 = A000079(n) + A005843(n) + 1 = A000051(n) + A005843(n).
From R. J. Mathar, Apr 28 2010: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: (-2 + 3*x + x^2)/((2*x - 1)*(x - 1)^2). (End)
E.g.f.: exp(x)*(1 + exp(x) + 2*x). - Stefano Spezia, May 06 2023

Extensions

Corrected (one 1048617 replaced by 2097195) by R. J. Mathar, Apr 28 2010

A192436 Primes of the form 2^n+2*n-3.

Original entry on oeis.org

5, 11, 73, 139, 269, 1048613, 67108913, 134217779, 4294967357, 549755813963, 9223372036854775931, 2417851639229258349412511, 316912650057057350374175801537, 2596148429267413814265248164610267
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 03 2011

Keywords

Comments

Generated by n = 2, 3, 6, 7, 8, 20, 26, 27, 32, 39, 63, 81, 98, 111,...

Crossrefs

Cf. A163115.

A301634 Numbers k such that 2^k + 2*k + 1 is prime.

Original entry on oeis.org

0, 1, 5, 13, 65, 85, 229, 2005, 3875, 3919, 5417, 8819, 11899, 16668, 19445, 28242, 33407, 37918, 40594, 141251
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

Next term, if it exists, is greater than 50000. Terms up to 229 correspond to provable primes. The terms greater than or equal to 2005 correspond to probable primes. - Jon E. Schoenfield and Vaclav Kotesovec, Mar 27 2018

Crossrefs

A163115 gives the primes.
Numbers k such that b^k + b*k + 1 is prime: this sequence (b=2), A171058 (b=3), A301635 (b=5).
Cf. A176691.

Programs

  • Maple
    a:=k->`if`(isprime(2^k+2*k+1),k,NULL): seq(a(k),k=0..6000); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    Flatten[{0, Select[Range[5000], PrimeQ[2^# + 2*# + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    for(n=0, 500, if(isprime(2^n+2*n+1), print1(n", ")))

Extensions

a(9)-a(15) from Vaclav Kotesovec, Mar 25 2018
a(16), a(18)-a(19) from Jon E. Schoenfield, Mar 26 2018
a(17) inserted by and a(20) from Michael S. Branicky, Jun 23 2024

A192764 Numbers k such that 2^(k-1)+2*k-1 is a prime number.

Original entry on oeis.org

1, 2, 6, 14, 66, 86, 230, 2006, 3876, 3920, 5418, 8820, 11900, 16669, 19446, 28243, 33408, 37919, 40595
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 09 2011

Keywords

Comments

a(20) > 10^5 if it exists. - Michael S. Branicky, Aug 26 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[4000], PrimeQ[2^(# - 1) + 2# - 1] &] (* Alonso del Arte, Jul 09 2011 *)
  • PARI
    for(n=1,10^6,if(ispseudoprime(2^(n-1)+2*n-1),print1(n,", ")));

Extensions

a(13)-a(19) from Michael S. Branicky, Jul 14 2023

A301638 Primes of the form 5^k + 5*k + 1.

Original entry on oeis.org

2, 11, 48828181, 298023223876953251, 2910383045673370361328301, 258493941422821148397315216271863391739316284656524658203551
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2018

Keywords

Comments

The next term is too large to include.
The next term has 349 digits. - Harvey P. Dale, Dec 03 2018

Crossrefs

Primes of the form b^k+b*k+1: A163115 (b=2), A180269 (b=3), this sequence (b=5).
Cf. A301635.

Programs

  • Mathematica
    Select[Table[5^n+5n+1,{n,0,550}],PrimeQ] (* Harvey P. Dale, Dec 03 2018 *)

Formula

a(n) = 5^A301635(n) + 5*A301635(n) + 1.

A280846 Numbers k such that all four of the numbers 2^k +- 2k +- 1 are nonprime.

Original entry on oeis.org

9, 10, 16, 17, 19, 20, 21, 22, 23, 24, 26, 29, 30, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Maverick K. Morrison, Jan 15 2017

Keywords

Examples

			For k=9, 2^k +- 2k +- 1 produces 531, 529, 495, and 493, none of which are prime.
		

Crossrefs

Cf. A061761 (numbers of the form 2^n + 2*n - 1), A105330 (numbers n such that 2^(n+1) + 2n + 1 is prime), A163115 (primes of the form 2^n + 2*n + 1), A173168 (primes of the form 2^k + 2k - 1). - Jon E. Schoenfield, Jan 22 2017

Programs

  • Mathematica
    Select[Range[100],NoneTrue[Flatten[{2^#+2#+{1,-1},2^#-2#+{1,-1}}],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2018 *)
Showing 1-6 of 6 results.