cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A155585 a(n) = 2^n*E(n, 1) where E(n, x) are the Euler polynomials.

Original entry on oeis.org

1, 1, 0, -2, 0, 16, 0, -272, 0, 7936, 0, -353792, 0, 22368256, 0, -1903757312, 0, 209865342976, 0, -29088885112832, 0, 4951498053124096, 0, -1015423886506852352, 0, 246921480190207983616, 0, -70251601603943959887872, 0, 23119184187809597841473536, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2009

Keywords

Comments

Previous name was: a(n) = Sum_{k=0..n-1} (-1)^(k)*C(n-1,k)*a(n-1-k)*a(k) for n>0 with a(0)=1.
Factorials have a similar recurrence: f(n) = Sum_{k=0..n-1} C(n-1,k)*f(n-1-k)*f(k), n > 0.
Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times Sum_{k=0..n} binomial(n,k)*k^q, then A155585(x) = Sum_{k=0..x-1} T(x,k)*(-1)^k. See Mathematica code below. - John M. Campbell, Nov 16 2011
For the difference table and the relation to the Seidel triangle see A239005. - Paul Curtz, Mar 06 2014
From Tom Copeland, Sep 29 2015: (Start)
Let z(t) = 2/(e^(2t)+1) = 1 + tanh(-t) = e.g.f.(-t) for this sequence = 1 - t + 2*t^3/3! - 16*t^5/5! + ... .
dlog(z(t))/dt = -z(-t), so the raising operators that generate Appell polynomials associated with this sequence, A081733, and its reciprocal, A119468, contain z(-d/dx) = e.g.f.(d/dx) as the differential operator component.
dz(t)/dt = z*(z-2), so the assorted relations to a Ricatti equation, the Eulerian numbers A008292, and the Bernoulli numbers in the Rzadkowski link hold.
From Michael Somos's formula below (drawing on the Edwards link), y(t,1)=1 and x(t,1) = (1-e^(2t))/(1+e^(2t)), giving z(t) = 1 + x(t,1). Compare this to the formulas in my list in A008292 (Sep 14 2014) with a=1 and b=-1,
A) A(t,1,-1) = A(t) = -x(t,1) = (e^(2t)-1)/(1+e^(2t)) = tanh(t) = t + -2*t^3/3! + 16*t^5/5! + -272*t^7/7! + ... = e.g.f.(t) - 1 (see A000182 and A000111)
B) Ainv(t) = log((1+t)/(1-t))/2 = tanh^(-1)(t) = t + t^3/3 + t^5/5 + ..., the compositional inverse of A(t)
C) dA/dt = (1-A^2), relating A(t) to a Weierstrass elliptic function
D) ((1-t^2)d/dt)^n t evaluated at t=0, a generator for the sequence A(t)
F) FGL(x,y)= (x+y)/(1+xy) = A(Ainv(x) + Ainv(y)), a related formal group law corresponding to the Lorentz FGL (Lorentz transformation--addition of parallel velocities in special relativity) and the Atiyah-Singer signature and the elliptic curve (1-t^2)*s = t^3 in Tate coordinates according to the Lenart and Zainoulline link and the Buchstaber and Bunkova link (pp. 35-37) in A008292.
A133437 maps the reciprocal odd natural numbers through the refined faces of associahedra to a(n).
A145271 links the differential relations to the geometry of flow maps, vector fields, and thereby formal group laws. See Mathworld for links of tanh to other geometries and statistics.
Since the a(n) are related to normalized values of the Bernoulli numbers and the Riemann zeta and Dirichlet eta functions, there are links to Witten's work on volumes of manifolds in two-dimensional quantum gauge theories and the Kervaire-Milnor formula for homotopy groups of hyperspheres (see my link below).
See A101343, A111593 and A059419 for this and the related generator (1 + t^2) d/dt and associated polynomials. (End)
With the exception of the first term (1), entries are the alternating sums of the rows of the Eulerian triangle, A008292. - Gregory Gerard Wojnar, Sep 29 2018

Examples

			E.g.f.: 1 + x - 2*x^3/3! + 16*x^5/5! - 272*x^7/7! + 7936*x^9/9! -+ ... = exp(x)/cosh(x).
O.g.f.: 1 + x - 2*x^3 + 16*x^5 - 272*x^7 + 7936*x^9 - 353792*x^11 +- ...
O.g.f.: 1 + x/(1+2*x) + 2!*x^2/((1+2*x)*(1+4*x)) + 3!*x^3/((1+2*x)*(1+4*x)*(1+6*x)) + ...
		

Crossrefs

Equals row sums of A119879. - Johannes W. Meijer, Apr 20 2011
(-1)^n*a(n) are the alternating row sums of A123125. - Wolfdieter Lang, Jul 12 2017

Programs

  • Maple
    A155585 := n -> 2^n*euler(n, 1): # Peter Luschny, Jan 26 2009
    a := proc(n) option remember; `if`(n::even, 0^n, -(-1)^n - add((-1)^k*binomial(n,k) *a(n-k), k = 1..n-1)) end: # Peter Luschny, Jun 01 2016
    # Or via the recurrence of the Fubini polynomials:
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> (-2)^n*subs(x = -1/2, F(n)):
    seq(a(n), n = 0..30); # Peter Luschny, May 21 2021
  • Mathematica
    a[m_] := Sum[(-2)^(m - k) k! StirlingS2[m, k], {k, 0, m}] (* Peter Luschny, Apr 29 2009 *)
    poly[q_] :=  2^(q-n)/n*FunctionExpand[Sum[Binomial[n, k]*k^q, {k, 0, n}]]; T[q_, r_] :=  First[Take[CoefficientList[poly[q], n], {r+1, r+1}]]; Table[Sum[T[x, k]*(-1)^k, {k, 0, x-1}], {x, 1, 16}] (* John M. Campbell, Nov 16 2011 *)
    f[n_] := (-1)^n 2^(n+1) PolyLog[-n, -1]; f[0] = -f[0]; Array[f, 27, 0] (* Robert G. Wilson v, Jun 28 2012 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,(-1)^(k)*binomial(n-1,k)*a(n-1-k)*a(k)))
    
  • PARI
    a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(X)/cosh(X),n)
    
  • PARI
    a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1+2*k*x+x*O(x^n))),n) \\ Paul D. Hanna, Jul 20 2011
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( 1 + sinh(x + A) / cosh(x + A), n))} /* Michael Somos, Jan 16 2012 */
    
  • PARI
    a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,intformal(subst(A,x,-x)+x*O(x^n))^k/k!));n!*polcoeff(A,n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 25 2013
    
  • Python
    from sympy import bernoulli
    def A155585(n): return (((2<<(m:=n+1))-2)*bernoulli(m)<>1) if n&1 else (0 if n else 1) # Chai Wah Wu, Apr 14 2023
  • Sage
    def A155585(n) :
        if n == 0 : return 1
        return add(add((-1)^(j+1)*binomial(n+1,k-j)*j^n for j in (0..k)) for k in (1..n))
    [A155585(n) for n in (0..26)] # Peter Luschny, Jul 23 2012
    
  • Sage
    def A155585_list(n): # Akiyama-Tanigawa algorithm
        A = [0]*(n+1); R = []
        for m in range(n+1) :
            d = divmod(m+3, 4)
            A[m] = 0 if d[1] == 0 else (-1)^d[0]/2^(m//2)
            for j in range(m, 0, -1) :
                A[j - 1] = j * (A[j - 1] - A[j])
            R.append(A[0])
        return R
    A155585_list(30) # Peter Luschny, Mar 09 2014
    

Formula

E.g.f.: exp(x)*sech(x) = exp(x)/cosh(x). (See A009006.) - Paul Barry, Mar 15 2006
Sequence of absolute values is A009006 (e.g.f. 1+tan(x)).
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + 2*k*x). - Paul D. Hanna, Jul 20 2011
a(n) = 2^n*E_{n}(1) where E_{n}(x) are the Euler polynomials. - Peter Luschny, Jan 26 2009
a(n) = EL_{n}(-1) where EL_{n}(x) are the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n+1) = (4^n-2^n)*B_n(1)/n, where B_{n}(x) are the Bernoulli polynomials (B_n(1) = B_n for n <> 1). - Peter Luschny, Apr 22 2009
G.f.: 1/(1-x+x^2/(1-x+4*x^2/(1-x+9*x^2/(1-x+16*x^2/(1-...))))) (continued fraction). - Paul Barry, Mar 30 2010
G.f.: -log(x/(exp(x)-1))/x = Sum_{n>=0} a(n)*x^n/(2^(n+1)*(2^(n+1)-1)*n!). - Vladimir Kruchinin, Nov 05 2011
E.g.f.: exp(x)/cosh(x) = 2/(1+exp(-2*x)) = 2/(G(0) + 1); G(k) = 1 - 2*x/(2*k + 1 - x*(2*k+1)/(x - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2011
E.g.f. is x(t,1) + y(t,1) where x(t,a) and y(t,a) satisfy y(t,a)^2 = (a^2 - x(t,a)^2) / (1 - a^2 * x(t,a)^2) and dx(t,a) / dt = y(t,a) * (1 - a * x(t,a)^2) and are the elliptic functions of Edwards. - Michael Somos, Jan 16 2012
E.g.f.: 1/(1 - x/(1+x/(1 - x/(3+x/(1 - x/(5+x/(1 - x/(7+x/(1 - x/(9+x/(1 +...))))))))))), a continued fraction. - Paul D. Hanna, Feb 11 2012
E.g.f. satisfies: A(x) = Sum_{n>=0} Integral( A(-x) dx )^n / n!. - Paul D. Hanna, Nov 25 2013
a(n) = -2^(n+1)*Li_{-n}(-1). - Peter Luschny, Jun 28 2012
a(n) = Sum_{k=1..n} Sum_{j=0..k} (-1)^(j+1)*binomial(n+1,k-j)*j^n for n > 0. - Peter Luschny, Jul 23 2012
From Sergei N. Gladkovskii, Oct 25 2012 to Dec 16 2013: (Start)
Continued fractions:
G.f.: 1 + x/T(0) where T(k) = 1 + (k+1)*(k+2)*x^2/T(k+1).
E.g.f.: exp(x)/cosh(x) = 1 + x/S(0) where S(k) = (2*k+1) + x^2/S(k+1).
E.g.f.: 1 + x/(U(0)+x) where U(k) = 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/U(k+1)))).
E.g.f.: 1 + tanh(x) = 4*x/(G(0)+2*x) where G(k) = 1 - (k+1)/(1 - 2*x/(2*x + (k+1)^2/G(k+1)));
G.f.: 1 + x/G(0) where G(k) = 1 + 2*x^2*(2*k+1)^2 - x^4*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1) (due to Stieltjes).
E.g.f.: 1 + x/(G(0) + x) where G(k) = 1 - 2*x/(1 + (k+1)/G(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*(k+1)/( 1 - x*(k+1)/Q(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*k^2 + x/(1 - x*(k+1)^2/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - 2*x + x*(k+1)/(1-x*(k+1)/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - x*(k+1)/(1 + x*(k+1)/Q(k+1)).
E.g.f.: 1 + x*Q(0) where Q(k) = 1 - x^2/( x^2 + (2*k+1)*(2*k+3)/Q(k+1)).
G.f.: 2 - T(0)/(1+x) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 + (1+x)^2/T(k+1)).
E.g.f.: 1/(x - Q(0)) where Q(k) = 4*k^2 - 1 + 2*x + x^2*(2*k-1)*(2*k+3)/Q(k+1). (End)
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A001057. - Michael Somos, Jan 03 2013
From Paul Curtz, Mar 06 2014: (Start)
a(2n) = A000007(n).
a(2n+1) = (-1)^n*A000182(n+1).
a(n) is the binomial transform of A122045(n).
a(n) is the row sum of A081658. For fractional Euler numbers see A238800.
a(n) + A122045(n) = 2, 1, -1, -2, 5, 16, ... = -A163982(n).
a(n) - A122045(n) = -A163747(n).
a(n) is the Akiyama-Tanigawa transform applied to 1, 0, -1/2, -1/2, -1/4, 0, ... = A046978(n+3)/A016116(n). (End)
a(n) = 2^(2*n+1)*(zeta(-n,1/2) - zeta(-n, 1)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n) = 2^(n + 1)*(2^(n + 1) - 1)*Bernoulli(n + 1, 1)/(n + 1). (From Bill Gosper, Oct 28 2015) - N. J. A. Sloane, Oct 28 2015 [See the above comment from Peter Luschny, Apr 22 2009.]
a(n) = -(n mod 2)*((-1)^n + Sum_{k=1..n-1} (-1)^k*C(n,k)*a(n-k)) for n >= 1. - Peter Luschny, Jun 01 2016
a(n) = (-2)^n*F_{n}(-1/2), where F_{n}(x) is the Fubini polynomial. - Peter Luschny, May 21 2021

Extensions

New name from Peter Luschny, Mar 12 2015

A163982 Real part of the coefficient [x^n] of the expansion of (1+i)/(1-i*exp(x)) - 1 multiplied by 2*n!, where i is the imaginary unit.

Original entry on oeis.org

-2, -1, 1, 2, -5, -16, 61, 272, -1385, -7936, 50521, 353792, -2702765, -22368256, 199360981, 1903757312, -19391512145, -209865342976, 2404879675441, 29088885112832, -370371188237525, -4951498053124096, 69348874393137901
Offset: 0

Views

Author

Roger L. Bagula, Aug 07 2009

Keywords

Comments

The sequence is a signed variant of A163747 and starts with a two instead of a zero.
From Paul Curtz, Mar 20 2013: (Start)
-a(n) and successive differences are:
2, 1, -1, -2, 5, 16, -61, -272;
-1, -2, -1, 7, 11, -77, -211, 1657, ...
-1, 1, 8, 4, -88, -134, 1868, 4894, ...
2, 7, -4, -92, -46, -46, 2002, 3026, ...
5, -11, -88, 46, 2048, 1024, -72928, ...
-16, -77, 134, 2002, -1024, -73952, -36976, ...
-61, 211, 1868, -3026, -72928, ...
272, 1657, -4894, -69902, ...
This is an autosequence: The inverse binomial transform (left column of the array of differences) is the signed sequence. The main diagonal 2, -2, 8, -92, ... doubles the entries of the first upper diagonal 1, -1, 4, -46, ... = A099023(n).
Sum of the antidiagonals: 2, 0, -4, 0, 32, ... = 2*A155585(n+1). (End)

Crossrefs

Cf. A163747.

Programs

  • Maple
    A163982 := n -> -2^n*(euler(n,1/2)+euler(n,1)): # Peter Luschny, Nov 25 2010
    A163982 := proc(n)
        (1+I)/(1-I*exp(x))-1 ;
        coeftayl(%,x=0,n) ;
        Re(%*2*n!) ;
    end proc; # R. J. Mathar, Mar 26 2013
  • Mathematica
    f[t_] = (1 + I)/(1 - I*Exp[t]) - 1; Table[Re[2*n!*SeriesCoefficient[Series[f[t], {t, 0, 30}], n]], {n, 0, 30}]
    max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 + x + (4*k+3)*(k+1)*x^2 /( 1 + (4*k+5)*(k+1)*x^2 / g[k+1]); gf = -2 - x/g[0]; CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Jan 22 2015, after Sergei N. Gladkovskii *)
    With[{nn = 50}, CoefficientList[Series[(-2)*Exp[t/2]*Cosh[t/2]/Cosh[t], {t, 0, nn}], t]*Range[0, nn]!] (* G. C. Greubel, Aug 24 2017 *)
  • PARI
    t='t+O('t^10); Vec(serlaplace((-2)*exp(x/2)*cosh(x/2)/cosh(x))) \\ G. C. Greubel, Aug 24 2017

Formula

Let ((1 + i)/(1 - i*exp(t)) - 1) = a(n) + I*b(n); abs(a(n)) = abs(b(n)).
a(n) = -2^n*(E_{n}(1/2) + E_{n}(1)), E_{n}(x) Euler polynomial. - Peter Luschny, Nov 25 2010
E.g.f.: -(1/cosh(x) + tanh(x)) - 1. - Sergei N. Gladkovskii, Dec 11 2013
G.f.: -2 - x/W(0), where W(k) = 1 + x + (4*k+3)*(k+1)*x^2 /( 1 + (4*k+5)*(k+1)*x^2 /W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 22 2015
E.g.f.: (-2)*exp(x/2)*cosh(x/2)/cosh(x). - G. C. Greubel, Aug 24 2017

A323833 A Seidel matrix A(n,k) read by antidiagonals upwards.

Original entry on oeis.org

0, 1, 1, 1, 0, -1, -2, -3, -3, -2, -5, -3, 0, 3, 5, 16, 21, 24, 24, 21, 16, 61, 45, 24, 0, -24, -45, -61, -272, -333, -378, -402, -402, -378, -333, -272, -1385, -1113, -780, -402, 0, 402, 780, 1113, 1385, 7936, 9321, 10434, 11214, 11616, 11616, 11214, 10434, 9321, 7936
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2019

Keywords

Comments

The first row is a signed version of the Euler numbers A000111.
Other rows are defined by A(n+1,k) = A(n,k) + A(n,k+1).

Examples

			Triangular array T(n,k) = A(n-k,k) (n >= 0, k = 0..n), read from the antidiagonals upwards of square array A:
     0;
     1,    1;
     1,    0,   -1;
    -2,   -3,   -3,   -2;
    -5,   -3,    0,    3,    5;
    16,   21,   24,   24,   21,   16;
    61,   45,   24,    0,  -24,  -45,  -61;
  -272, -333, -378, -402, -402, -378, -333, -272;
  ...
From _Petros Hadjicostas_, Mar 04 2021: (Start)
Square array A(n,k) (n, k >= 0) begins:
   0,  1,   -1,   -2,     5,    16,     -61,    -272,     1385, ...
   1,  0,   -3,    3,    21,   -45,    -333,    1113,     9321, ...
   1, -3,    0,   24,   -24,  -378,     780,   10434,   -33264, ...
  -2, -3,   24,    0,  -402,   402,   11214,  -22830,  -480162, ...
  -5, 21,   24, -402,     0, 11616,  -11616, -502992,  1017600, ...
  16, 45, -378, -402, 11616,     0, -514608,  514608, 31880016, ...
  ... (End)
		

Crossrefs

Cf. A000111, A002832 (next-to-main diagonal), A163747, A323834.

Programs

  • Maple
    A323833 := proc(n,k)
        option remember;
        local i ;
        if k =0 then
            -A163747(n) ;
        elif n =0 then
            (-1)^k*A163747(k) ;
        elif k =n then
            0 ;
        else
            add(binomial(n,i)*procname(0,k+i), i=0..n) ;
        end if;
    end proc:
    seq(seq(A323833(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Jun 11 2025
  • PARI
    {b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos's PARI program for A000111.
    c(n) = if(n==0, 0, (-1)^floor(n/2)*b(n))
    A(n, k) = sum(i=0, n, binomial(n, i)*c(k+i)) \\ Petros Hadjicostas, Mar 04 2021

Formula

From Petros Hadjicostas, Mar 04 2021: (Start)
Formulas about the square array A(n,k) (n,k > 0):
A(n,0) = -A163747(n) = (-1)^(n+1)*A(0,n) = if(n==0, 0, (-1)^floor(n/2)*A000111(n)).
A(n,n) = 0 and A(n,k) + (-1)^(n+k)*A(k,n) = 0.
A(n, k) = Sum_{i=0..n} binomial(n, i)*A(0,k+i).
Joint e.g.f.: Sum_{n,k >= 0} A(n,k)*(x^n/n!)*(y^k/k!) = 2*exp(-y)*(1 - exp(-x - y)) / (1 + exp(-2*(x + y))) = 2*exp(x)*(exp(x+y) - 1) / (exp(2*(x+y)) + 1).
Formulas about the triangular array T(n,k) = A(n-k,k) (0 <= k <= n):
T(n+1,k+1) = T(n+1,k) - T(n,k).
T(n,k) = -(-1)^n*T(n,n-k).
T(n,k) = Sum_{i=0..n-k} binomial(n-k,i)*T(k+i,k+i) for k=0..n with initial condition T(n,n) = (-1)^n*A163747(n). (End)

Extensions

More terms from Alois P. Heinz, Feb 09 2019

A243963 a(n) = n*4^n*(-Z(1-n, 1/4)/2 + Z(1-n, 3/4)/2 - Z(1-n, 1)*(1 - 2^(-n))) for n > 0 and a(0) = 0, where Z(n, c) is the Hurwitz zeta function.

Original entry on oeis.org

0, 0, 2, 3, -8, -25, 96, 427, -2176, -12465, 79360, 555731, -4245504, -35135945, 313155584, 2990414715, -30460116992, -329655706465, 3777576173568, 45692713833379, -581777702256640, -7777794952988025, 108932957168730112, 1595024111042171723, -24370173276164456448
Offset: 0

Views

Author

Paul Curtz, Jun 16 2014

Keywords

Comments

Previous name was: 0 followed by -(n+1)*A163747(n).
Difference table of a(n):
0, 0, 2, 3, -8, -25,...
0, 2, 1, -11, -17, 121,...
2, -1, -12, -6, 138, 210,...
-3, -11, 6, 144, 72, -3144,...
-8, 17, 138, -72, -3216, -1608,...
25, 121, -210, -3144, 1608,...
a(n) is an autosequence of second kind. Its inverse binomial transform is the signed sequence. Its main diagonal is the first upper diagonal multiplied by 2.

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 0, n*4^n*(-Zeta(0, 1-n, 1/4)/2 + Zeta(0, 1-n, 3/4)/2 + Zeta(1-n)*(2^(-n)-1))): seq(a(n), n=0..24); # Peter Luschny, Jul 21 2020
  • Mathematica
    a[0] = 0; a[n_] := -n*SeriesCoefficient[(2*E^x*(1 - E^x))/(1 + E^(2*x)), {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jun 17 2014 *)

Formula

a(n) = 0, 0, followed by (period 4: repeat 1, 1, -1, -1)*A065619(n+2).
a(2n) = (-1)^(n+1)A009752(n). a(2n+1) = (-1)^n*A009843(n+1).

Extensions

New name by Peter Luschny, Jul 21 2020

A218529 Binomial transform of -1, -1, 1, 2, -5, -16, ... (signed variant of A000111).

Original entry on oeis.org

-1, -2, -2, 1, 4, -17, -62, 271, 1384, -7937, -50522, 353791, 2702764, -22368257, -199360982, 1903757311, 19391512144, -209865342977, -2404879675442, 29088885112831, 370371188237524, -4951498053124097, -69348874393137902, 1015423886506852351, 15514534163557086904
Offset: 0

Views

Author

Paul Curtz, Mar 27 2013

Keywords

Comments

Any distribution of signs across A000111 defines a sequence with a different binomial transform. For example, the sign pattern +--++--++--... applied to A000111 leads to A217714, and this sequence here is constructed with the sign pattern --++--++--++... .
From another point of view, we can start from this sequence, build the array of successive differences, and can read the signed variant of A000111 off the left column:
-1, -2, -2, 1, 4, -17, -62, ...
-1, 0, 3, 3, -21, -45, ...
1, 3, 0, -24, -24, ...
2, -3, -24, 0, ...
-5, -21, 24, ...
-16, 45, ...
61, ...
See the array in A163747.
The unit digits in the sequence of absolute values enter a periodic sequence 2, 1, 4, 7, 2, 1, 4, 7, ... (period 4).

Crossrefs

Programs

  • Maple
    seq(2^(n-1)*(euler(n,1/2)-2*euler(n,2/2)-euler(n,3/2)),n=0..24); # Peter Luschny, Feb 06 2017
  • Mathematica
    nmax = 21; signedA111 = Table[ If[ EvenQ[ n], -EulerE[n], -(2^(n+1)*(2^(n+1) - 1)*BernoulliB[n+1])/(n+1)], {n, 0, nmax}]; Clear[t]; t[n_ , 0] := signedA111[[n+1]]; t[n_ , k_ ] := t[n, k] = t[n, k-1] + t[n+1, k-1]; a[n_] := t[0, n]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Apr 04 2013 *)
    Table[(EulerE[n] - 2^n (2 EulerE[n, 1] + EulerE[n, 3/2]))/2, {n, 0, 20}] (* Benedict W. J. Irwin, May 24 2016 *)

Formula

a(n) = A163747(n) - 1.
E.g.f.: exp(x)*(1-exp(2*x)-2*exp(x))/(1+exp(2*x)). - Philippe Deléham, Apr 01 2013
a(n) ~ n! * 2^(n+2)/Pi^(n+1) * (cos(Pi*n/2)-sin(Pi*n/2)). - Vaclav Kotesovec, Sep 24 2013
a(n) = (A122045(n) - 2^n(2*EulerE(n,1) + EulerE(n,3/2)))/2, where EulerE(n,x) is the n-th Euler polynomial. - Benedict W. J. Irwin, May 24 2016

A342195 a(n) = Sum_{k=0..floor(n/2)} A323833(n,k) if A323833 is read as a triangle.

Original entry on oeis.org

0, 1, 1, -5, -8, 61, 130, -1385, -3680, 50521, 160816, -2702765, -10026368, 199360981, 844583440, -19391512145, -92369507840, 2404879675441, 12722897618176, -370371188237525, -2154662195222528, 69348874393137901, 440001333689382400, -15514534163557086905, -106615331831035289600, 4087072509293123892361
Offset: 0

Views

Author

Petros Hadjicostas, Mar 04 2021

Keywords

Comments

Because A323833(n,n/2) = 0 for n even (if A323833 is read as a triangle), we also have a(n) = Sum_{k=0..ceiling((n-1)/2)} A323833(n,k).

Examples

			a(3) = -2 - 3 = -5.
a(4) = -5 - 3 = -8.
a(5) = 16 + 21 + 24 = 61.
a(6) = 61 + 45 + 24 = 130.
a(7) = -272 - 333 - 378 - 402 = -1385.
		

Crossrefs

Programs

  • PARI
    {b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos's PARI program for A000111
    c(n) = if(n==0, 0, (-1)^(n+floor(n/2))*b(n))
    a(n) = sum(k=0, floor(n/2), sum(i=0, n-k, binomial(n-k,i)*(-1)^(k+i)*c(k+i)))

Formula

a(n) = Sum_{k=0..floor(n/2)} A323833(n-k,k) if A323833 is read as a square array (by upwards antidiagonals).
a(2*n+1) = -A028296(n+1).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} binomial(n-k,i) * (-1)^(k+i) * A163747(k+i).

A342315 T(n, k) = [x^k] 2^n*(Euler(n, x) - Euler(n, x/2)), where Euler(n, x) are the Euler polynomials. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, -2, 3, 0, 0, -9, 7, 0, 8, 0, -28, 15, 0, 0, 60, 0, -75, 31, 0, -96, 0, 280, 0, -186, 63, 0, 0, -1008, 0, 1050, 0, -441, 127, 0, 2176, 0, -6272, 0, 3472, 0, -1016, 255, 0, 0, 29376, 0, -30240, 0, 10584, 0, -2295, 511, 0, -79360, 0, 228480, 0, -124992, 0, 30480, 0, -5110, 1023
Offset: 0

Views

Author

Peter Luschny, Mar 19 2021

Keywords

Examples

			Table starts:
                            [0] 0
                           [1] 0, 1
                         [2] 0, -2, 3
                        [3] 0, 0, -9, 7
                     [4] 0, 8, 0, -28, 15
                   [5] 0, 0, 60, 0, -75, 31
                [6] 0, -96, 0, 280, 0, -186, 63
            [7] 0, 0, -1008, 0, 1050, 0, -441, 127
         [8] 0, 2176, 0, -6272, 0, 3472, 0, -1016, 255
      [9] 0, 0, 29376, 0, -30240, 0, 10584, 0, -2295, 511
		

Crossrefs

Cf. A060096/A060097, A163747 (row sums).

Programs

  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
    E := (n, x) -> 2^n*(euler(n, x) - euler(n, x/2));
    0,seq(CoeffList(E(n, x)), n = 0..10);

A343846 a(n) = binomial(2*n, n)*2^n*|Euler(n, 1/2) - Euler(n, 0)|.

Original entry on oeis.org

0, 2, 6, 40, 350, 4032, 56364, 933504, 17824950, 385848320, 9334057876, 249576198144, 7308698191340, 232643283353600, 7997684730384600, 295306112919306240, 11655857682806336550, 489743069731226910720, 21824608434847162167300, 1028154317960939805081600
Offset: 0

Views

Author

Peter Luschny, May 06 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> binomial(2*n, n)*abs(euler(n) - 2^n*euler(n, 0)):
    seq(a(n), n=0..19);
  • Mathematica
    Table[Binomial[2*n, n]*Abs[EulerE[n] - 2^n*EulerE[n, 0]], {n, 0, 20}] (* Vaclav Kotesovec, May 06 2021 *)

Formula

a(n) = binomial(2*n, n) * |Euler(n) - 2^n*Euler(n, 0)|.
a(n) = A109449(2*n, n) for n >= 1.
a(n) = (-1)^binomial(n, 2) * binomial(2*n, n) * A163747(n).
a(n) ~ 2^(3*n + 5/2) * n^n / (Pi^(n+1) * exp(n)). - Vaclav Kotesovec, May 06 2021
Showing 1-8 of 8 results.