cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A008949 Triangle read by rows of partial sums of binomial coefficients: T(n,k) = Sum_{i=0..k} binomial(n,i) (0 <= k <= n); also dimensions of Reed-Muller codes.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 8, 1, 5, 11, 15, 16, 1, 6, 16, 26, 31, 32, 1, 7, 22, 42, 57, 63, 64, 1, 8, 29, 64, 99, 120, 127, 128, 1, 9, 37, 93, 163, 219, 247, 255, 256, 1, 10, 46, 130, 256, 382, 466, 502, 511, 512, 1, 11, 56, 176, 386, 638, 848, 968, 1013, 1023, 1024, 1, 12, 67, 232, 562, 1024, 1486, 1816, 1981, 2036, 2047, 2048
Offset: 0

Views

Author

Keywords

Comments

The second-left-from-middle column is A000346: T(2n+2, n) = A000346(n). - Ed Catmur (ed(AT)catmur.co.uk), Dec 09 2006
T(n,k) is the maximal number of regions into which n hyperplanes of co-dimension 1 divide R^k (the Cake-Without-Icing numbers). - Rob Johnson, Jul 27 2008
T(n,k) gives the number of vertices within distance k (measured along the edges) of an n-dimensional unit cube, (i.e., the number of vertices on the hypercube graph Q_n whose distance from a reference vertex is <= k). - Robert Munafo, Oct 26 2010
A triangle formed like Pascal's triangle, but with 2^n for n >= 0 on the right border instead of 1. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
Consider each "1" as an apex of two sequences: the first is the set of terms in the same row as the "1", but the rightmost term in the row repeats infinitely. Example: the row (1, 4, 7, 8) becomes (1, 4, 7, 8, 8, 8, ...). The second sequence begins with the same "1" but is the diagonal going down and to the right, thus: (1, 5, 16, 42, 99, 219, 466, ...). It appears that for all such sequence pairs, the binomial transform of the first, (1, 4, 7, 8, 8, 8, ...) in this case; is equal to the second: (1, 5, 16, 42, 99, ...). - Gary W. Adamson, Aug 19 2015
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let q(n) be the sum of polynomials in the n-th generation of T*. For n >= 0, row n of A008949 gives the coefficients of q(n+1); e.g., (row 3) = (1, 4, 7, 8) matches x^3 + 4*x^2 + 7*x + 9, which is the sum of the 8 polynomials in the 4th generation of T*. - Clark Kimberling, Jun 16 2016
T(n,k) is the number of subsets of [n]={1,...,n} of at most size k. Equivalently, T(n,k) is the number of subsets of [n] of at least size n-k. Counting the subsets of at least size (n-k) by conditioning on the largest element m of the smallest (n-k) elements of such a subset provides the formula T(n,k) = Sum_{m=n-k..n} C(m-1,n-k-1)*2^(n-m), and, by letting j=m-n+k, we obtain T(n,k) = Sum_{j=0..k} C(n+j-k-1,j)*2^(k-j). - Dennis P. Walsh, Sep 25 2017
If the interval of integers 1..n is shifted up or down by k, making the new interval 1+k..n+k or 1-k..n-k, then T(n-1,n-1-k) (= 2^(n-1)-T(n-1,k-1)) is the number of subsets of the new interval that contain their own cardinal number as an element. - David Pasino, Nov 01 2018

Examples

			Triangle begins:
  1;
  1,  2;
  1,  3,  4;
  1,  4,  7,   8;
  1,  5, 11,  15,  16;
  1,  6, 16,  26,  31,  32;
  1,  7, 22,  42,  57,  63,  64;
  1,  8, 29,  64,  99, 120, 127, 128;
  1,  9, 37,  93, 163, 219, 247, 255,  256;
  1, 10, 46, 130, 256, 382, 466, 502,  511,  512;
  1, 11, 56, 176, 386, 638, 848, 968, 1013, 1023, 1024;
  ...
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 376.

Crossrefs

Row sums sequence is A001792.
T(n, m)= A055248(n, n-m).

Programs

  • GAP
    T:=Flat(List([0..11],n->List([0..n],k->Sum([0..k],j->Binomial(n+j-k-1,j)*2^(k-j))))); # Muniru A Asiru, Nov 25 2018
    
  • Haskell
    a008949 n k = a008949_tabl !! n !! k
    a008949_row n = a008949_tabl !! n
    a008949_tabl = map (scanl1 (+)) a007318_tabl
    -- Reinhard Zumkeller, Nov 23 2012
    
  • Magma
    [[(&+[Binomial(n,j): j in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Nov 25 2018
    
  • Maple
    A008949 := proc(n,k) local i; add(binomial(n,i),i=0..k) end; # Typo corrected by R. J. Mathar, Oct 26 2010
  • Mathematica
    Table[Length[Select[Subsets[n], (Length[ # ] <= k) &]], {n, 0, 12}, {k, 0, n}] // Grid (* Geoffrey Critzer, May 13 2009 *)
    Flatten[Accumulate/@Table[Binomial[n,i],{n,0,20},{i,0,n}]] (* Harvey P. Dale, Aug 08 2015 *)
    T[ n_, k_] := If[ n < 0 || k > n, 0, Binomial[n, k] Hypergeometric2F1[1, -k, n + 1 - k, -1]]; (* Michael Somos, Aug 05 2017 *)
  • PARI
    A008949(n)=T8949(t=sqrtint(2*n-sqrtint(2*n)),n-t*(t+1)/2)
    T8949(r,c)={ 2*c > r || return(sum(i=0,c,binomial(r,i))); 1<M. F. Hasler, May 30 2010
    
  • PARI
    {T(n, k) = if(k>n, 0, sum(i=0, k, binomial(n, i)))}; /* Michael Somos, Aug 05 2017 */
    
  • PARI
    row(n) = my(v=vector(n+1, k, binomial(n,k-1))); vector(#v, k, sum(i=1, k, v[i])); \\ Michel Marcus, Apr 13 2025
    
  • Sage
    [[sum(binomial(n,j) for j in range(k+1)) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Nov 25 2018

Formula

From partial sums across rows of Pascal triangle A007318.
T(n, 0) = 1, T(n, n) = 2^n, T(n, k) = T(n-1, k-1) + T(n-1, k), 0 < k < n.
G.f.: (1 - x*y)/((1 - y - x*y)*(1 - 2*x*y)). - Antonio Gonzalez (gonfer00(AT)gmail.com), Sep 08 2009
T(2n,n) = A032443(n). - Philippe Deléham, Sep 16 2009
T(n,k) = 2 T(n-1,k-1) + binomial(n-1,k) = 2 T(n-1,k) - binomial(n-1,k). - M. F. Hasler, May 30 2010
T(n,k) = binomial(n,n-k)* 2F1(1, -k; n+1-k; -1). - Olivier Gérard, Aug 02 2012
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013
T(n,floor(n/2)) = A027306(n). - Reinhard Zumkeller, Nov 14 2014
T(n,n) = 2^n, otherwise for 0 <= k <= n-1, T(n,k) = 2^n - T(n,n-k-1). - Bob Selcoe, Mar 30 2017
For fixed j >= 0, lim_{n -> oo} T(n+1,n-j+1)/T(n,n-j) = 2. - Bob Selcoe, Apr 03 2017
T(n,k) = Sum_{j=0..k} C(n+j-k-1,j)*2^(k-j). - Dennis P. Walsh, Sep 25 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 23 2000

A259525 First differences of A007318, when Pascal's triangle is seen as flattened list.

Original entry on oeis.org

0, 0, 0, 1, -1, 0, 2, 0, -2, 0, 3, 2, -2, -3, 0, 4, 5, 0, -5, -4, 0, 5, 9, 5, -5, -9, -5, 0, 6, 14, 14, 0, -14, -14, -6, 0, 7, 20, 28, 14, -14, -28, -20, -7, 0, 8, 27, 48, 42, 0, -42, -48, -27, -8, 0, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 0, 10, 44, 110
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 18 2015

Keywords

Comments

A214292 gives first differences per row in Pascal's triangle.

Crossrefs

Programs

  • Haskell
    a259525 n = a259525_list !! n
    a259525_list = zipWith (-) (tail pascal) pascal
                               where pascal = concat a007318_tabl
    
  • Magma
    [k eq n select 0 else (n-2*k-1)*Binomial(n,k+1)/(n-k): k in [0..n], n in [0..14]]; // G. C. Greubel, Apr 25 2024
    
  • Mathematica
    Table[If[k==n, 0, ((n-2*k-1)/(n-k))*Binomial[n,k+1]], {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, Apr 25 2024 *)
  • SageMath
    flatten([[binomial(n,k+1) -binomial(n,k) +int(k==n) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Apr 25 2024

Formula

From G. C. Greubel, Apr 25 2024: (Start)
If viewed as a triangle then:
T(n, k) = binomial(n, k+1) - binomial(n, k), with T(n, n) = 0.
T(n, n-k) = - T(n, k), for 0 <= k < n.
T(2*n, n) = [n=0] - A000108(n).
Sum_{k=0..n} T(n, k) = 0 (row sums).
Sum_{k=0..floor(n/2)} T(n, k) = A047171(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A021499(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A074331(n-1). (End)

A381500 a(n) = A019565(A187769(n)).

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 165, 154, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 195, 182, 273, 455, 286, 429, 715, 1001, 390, 546, 910, 1365, 858, 1430, 2145, 2002, 3003
Offset: 0

Views

Author

Keywords

Comments

The squarefree numbers, ordered first by largest prime factor (dividing the sequence into rows), then by number of prime factors, then lexicographically by their prime factors (written in descending order).
We index (a(n)) from offset 0, matching the choice for A019565 and similar sequences.

Examples

			Table begins:
  Row 0:  1;
  Row 1:  2;
  Row 2:  3,  6;
  Row 3:  5, 10, 15, 30;
  Row 4:  7, 14, 21, 35, 42, 70, 105, 210;
  Row 5: 11, 22, 33, 55, 77, 66, 110, 165, 154, 231, 385, 330, 462, 770, 1155, 2310;
  ...
Table of a(n) for n = 0..31, demonstrating relationship of this sequence with s = A187769:
          <-factors                    <-factors
   n  a(n)  2 3 5 7  s(n)  |   n   a(n)  2 3 5 7 11 s(n)
  -------------------------|----------------------------
   0    1   .          0   |  16    11   . . . . x   16
   1    2   x          1   |  17    22   x . . . x   17
   2    3   . x        2   |  18    33   . x . . x   18
   3    6   x x        3   |  19    55   . . x . x   20
   4    5   . . x      4   |  20    77   . . . x x   24
   5   10   x . x      5   |  21    66   x x . . x   19
   6   15   . x x      6   |  22   110   x . x . x   21
   7   30   x x x      7   |  23   165   . x x . x   22
   8    7   . . . x    8   |  24   154   x . . x x   25
   9   14   x . . x    9   |  25   231   . x . x x   26
  10   21   . x . x   10   |  26   385   . . x x x   28
  11   35   . . x x   12   |  27   330   x x x . x   23
  12   42   x x . x   11   |  28   462   x x . x x   27
  13   70   x . x x   13   |  29   770   x . x x x   29
  14  105   . x x x   14   |  30  1155   . x x x x   30
  15  210   x x x x   15   |  31  2310   x x x x x   31
  -------------------------|----------------------------
            1 2 4 8  s(n)  |             1 2 4 8 16 s(n)
             bits->                         bits->
		

Crossrefs

Programs

  • Mathematica
    a187769 = {{0}}~Join~Table[SortBy[Range[2^n, 2^(n + 1) - 1], DigitCount[#, 2, 1] &], {n, 0, 8}] // Flatten; a019565[x_] := Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[x, 2]; Map[a019565, a187769]

Formula

a(n) = A019565(A187769(n)).
As an irregular triangle T(n,k), where row 0 = {1}:
For n > 1, omega(T(n,1)) = 1, omega(T(n, 2^(n-1))) = n, thus row n is divided into n segments S such that with S, omega(T(n,k)) = m, where m = 1..n. (See A187769 for the lengths of segments associated with Pascal's triangle A007318.)
S(-1,-1) = (1).
For n >= 0:
S(n-1, n) = (); S(n, -1) = ();
for 0 <= m <= n, S(n,m) = ( A253550'(S(n-1, m)), A119416'(S(n-1, m-1)) ), where Axxx'((i_1, i_2, ..., i_j)) denotes Axxx(i_1), Axxx(i_2), ..., Axxx(i_j).
a(A163866(n)) = A098012(n).

A321741 Product of the first n terms of A007318 (Pascal), read as a sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 6, 18, 18, 18, 72, 432, 1728, 1728, 1728, 8640, 86400, 864000, 4320000, 4320000, 4320000, 25920000, 388800000, 7776000000, 116640000000, 699840000000, 699840000000, 699840000000, 4898880000000, 102876480000000, 3600676800000000, 126023688000000000, 2646497448000000000, 18525482136000000000, 18525482136000000000
Offset: 1

Views

Author

Kei Ryan, Nov 17 2018

Keywords

Examples

			The 10th term is 18 because the first 10 terms of Pascal's Triangle by row are 1,1,1,1,2,1,1,3,3,1 and 1*1*1*1*2*1*1*3*3*1=18.
		

Crossrefs

Cf. A007318, A163866 (partial sums).

Programs

  • Mathematica
    FoldList[Times, 1, Rest[Flatten[Table[Binomial[n, k], {n, 0, 7}, {k, 0, n}]]]] (* Amiram Eldar, Nov 18 2018 *)
  • PARI
    lista(nn) = {my(i=0, j=0, p=1); for (n=1, nn, p *= binomial(i, j); print1(p, ", "); j++; if (j > i, j = 0; i++););} \\ Michel Marcus, Jan 25 2019

Formula

a(n) = Product_{j=0..n-1} P(n), where P(n) = A007318(n) (as a sequence). - Wolfdieter Lang, Jan 25 2019
Showing 1-4 of 4 results.