A055248 Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).
1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0
Examples
The triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 1 2: 4 3 1 3: 8 7 4 1 4: 16 15 11 5 1 5: 32 31 26 16 6 1 6: 64 63 57 42 22 7 1 7: 128 127 120 99 64 29 8 1 8: 256 255 247 219 163 93 37 9 1 9: 512 511 502 466 382 256 130 46 10 1 10: 1024 1023 1013 968 848 638 386 176 56 11 1 ... Reformatted. - _Wolfdieter Lang_, Jan 09 2015 Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3. The matrix inverse starts 1; -2, 1; 2, -3, 1; -2, 5, -4, 1; 2, -7, 9, -5, 1; -2, 9, -16, 14, -6, 1; 2, -11, 25,- 30, 20, -7, 1; -2, 13, -36, 55, -50, 27, -8, 1; 2, -15, 49, -91, 105, -77, 35, -9, 1; -2, 17, -64, 140, -196, 182, -112, 44, -10, 1; 2, -19, 81, -204, 336, -378, 294, -156, 54, -11, 1; ... which may be related to A029653. - _R. J. Mathar_, Mar 29 2013 From _Peter Bala_, Dec 23 2014: (Start) With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins /1 \ /1 \ /1 \ /1 \ |2 1 ||0 1 ||0 1 | |2 1 | |4 3 1 ||0 2 1 ||0 0 1 |... = |4 5 1 | |8 7 4 1 ||0 4 3 1 ||0 0 2 1 | |8 19 9 1 | |... ||0 8 7 4 1 ||0 0 4 3 1| |... | |... ||... ||... | | | = A143494. (End) Matrix factorization of square array as P*U*transpose(P): /1 \ /1 \ /1 1 1 1 ...\ /1 1 1 1 ...\ |1 1 ||1 1 ||0 1 2 3 ... | |2 3 4 5 ... | |1 2 1 ||1 1 1 ||0 0 1 3 ... | = |4 7 11 16 ... | |1 3 3 1 ||1 1 1 1 ||0 0 0 1 ... | |8 15 26 42 ... | |... ||... ||... | |... | - _Peter Bala_, Jan 13 2016
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Peter Bala, Notes on generalized Riordan arrays
- Peter Bala, A055248: Rapidly converging series for log(2) and Pi
- Jean-Luc Baril, Javier F. González, and José L. Ramírez, Last symbol distribution in pattern avoiding Catalan words, Univ. Bourgogne (France, 2022).
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Norman Lindquist and Gerard Sierksma, Extensions of set partitions, Journal of Combinatorial Theory, Series A 31.2 (1981): 190-198. See Table I.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
Crossrefs
Programs
-
Haskell
a055248 n k = a055248_tabl !! n !! k a055248_row n = a055248_tabl !! n a055248_tabl = map reverse a008949_tabl -- Reinhard Zumkeller, Jun 20 2015
-
Maple
T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2). seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # Peter Luschny, Oct 10 2019
-
Mathematica
a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *) T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1]; Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* Peter Luschny, Oct 06 2023 *)
Formula
a(n, m) = A008949(n, n-m), if n > m >= 0.
a(n, m) = Sum_{k=m..n} A007318(n, k) (partial row sums in columns m).
Column m recursion: a(n, m) = Sum_{j=m..n-1} a(j, m) + A007318(n, m) if n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (1/(1-2*x))*(x/(1-x))^m, m >= 0.
a(n, m) = Sum_{j=0..n} binomial(n, m+j). - Paul Barry, Feb 03 2005
Inverse binomial transform (by columns) of A112626. - Ross La Haye, Dec 31 2006
T(2n,n) = A032443(n). - Philippe Deléham, Sep 16 2009
From Peter Bala, Dec 23 2014: (Start)
Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 7*x + 4*x^2/2! + x^3/3!) = 8 + 15*x + 26*x^2/2! + 42*x^3/3! + 64*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143494 (but with a different offset). See the Example section. Cf. A106516. (End)
a(n,m) = Sum_{p=m..n} 2^(n-p)*binomial(p-1,m-1), n >= m >= 0, else 0. - Wolfdieter Lang, Jan 09 2015
T(n, k) = 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n+1], [n-k+2], 1/2). - Peter Luschny, Oct 10 2019
T(n, k) = binomial(n, k)*hypergeom([1, k - n], [k + 1], -1). - Peter Luschny, Oct 06 2023
n-th row polynomial R(n, x) = (2^n - x*(1 + x)^n)/(1 - x). These polynomials can be used to find series acceleration formulas for the constants log(2) and Pi. - Peter Bala, Mar 03 2025
A375572 Numbers occurring at least twice in Bernoulli's triangle A008949.
1, 4, 7, 8, 11, 15, 16, 22, 26, 29, 31, 32, 37, 42, 46, 56, 57, 63, 64, 67, 79, 92, 93, 99, 106, 120, 121, 127, 128, 130, 137, 154, 163, 172, 176, 191, 211, 219, 232, 247, 254, 255, 256, 277, 299, 301, 326, 352, 378, 379, 382, 386, 407, 436, 466, 470, 497, 502
Offset: 1
Keywords
Comments
Equivalently, 1 together with numbers occurring in columns k >= 2 of Bernoulli's triangle.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isok(k) = my(nb=0); for (i=0, k, nb += #select(x->(x==k), vector(i+1, j, sum(jj=0, j-1, binomial(i, jj))))); nb >= 2; \\ Michel Marcus, Aug 22 2024
-
PARI
lista(nn) = my(v = vector(nn)); for (n=1, nn, my(w=vector(n+1, j, sum(jj=0, j-1, binomial(n, jj)))); for (i=1, #w, if (w[i] <= nn, v[w[i]]++));); Vec(select(x->(x>=2), v, 1)); \\ Michel Marcus, Aug 23 2024
-
Python
from math import comb from bisect import insort def A375572_list(nmax): a_list = [1] if nmax == 1: return a_list nkb_list = [(2,2,4)] # List of triples (n,k,A008949(n,k)), sorted by the last element. while 1: b0 = nkb_list[0][2] a_list.append(b0) if len(a_list) == nmax: return a_list while 1: n,k,b = nkb_list[0] if b > b0: break del nkb_list[0] insort(nkb_list,(n+1,k,2*b-comb(n,k)),key=lambda x:x[2]) if n == k: insort(nkb_list,(n+1,k+1,2**(k+1)),key=lambda x:x[2])
A375570 Smallest m such that A008949(m,k) = n for some k.
0, 1, 2, 2, 4, 5, 3, 3, 8, 9, 4, 11, 12, 13, 4, 4, 16, 17, 18, 19, 20, 6, 22, 23, 24, 5, 26, 27, 7, 29, 5, 5, 32, 33, 34, 35, 8, 37, 38, 39, 40, 6, 42, 43, 44, 9, 46, 47, 48, 49, 50, 51, 52, 53, 54, 10, 6, 57, 58, 59, 60, 61, 6, 6, 64, 65, 11, 67, 68, 69, 70
Offset: 1
Keywords
A375573 Numbers occurring at least three times in Bernoulli's triangle A008949.
1, 16, 64, 232, 256, 466, 562, 1024, 1486, 2048, 4096, 15226, 16384, 44552, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664
Offset: 1
Keywords
Comments
Equivalently, 1 together with numbers occurring at least three times in columns k >= 1 of Bernoulli's triangle.
Equivalently, 1 together with numbers occurring at least twice in columns k >= 2 of Bernoulli's triangle.
A079284 Diagonal sums of triangle A008949.
1, 1, 3, 4, 9, 13, 26, 39, 73, 112, 201, 313, 546, 859, 1469, 2328, 3925, 6253, 10434, 16687, 27633, 44320, 72977, 117297, 192322, 309619, 506037, 815656, 1329885, 2145541, 3491810, 5637351, 9161929, 14799280, 24026745, 38826025, 62983842, 101809867, 165055853, 266865720
Offset: 0
Comments
a(2n) - a(2n-1) = Fibonacci(2n+1).
Diagonal sums of triangle A054450. - Paul Barry, Oct 23 2004
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Donatella Merlini, Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-2).
Programs
-
Magma
[Fibonacci(n+3)-2^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 05 2013
-
Maple
with (combinat):a[0]:=0:a[1]:=1:a[2]:=1:for n from 2 to 50 do a[n]:=fibonacci(n-1)+2*a[n-2] od: seq(a[n], n=1..31); # Zerinvary Lajos, Mar 17 2008
-
Mathematica
CoefficientList[Series[(1 - x^2) / ((1 - x - x^2) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *) LinearRecurrence[{1,3,-2,-2},{1,1,3,4},40] (* Harvey P. Dale, Nov 30 2018 *)
Formula
a(n) = Sum_{j=0..floor(n/2)} Sum_{i=0..j} binomial(n-j, i).
a(n) = Fibonacci(n+3) - 2^floor((n+1)/2). - Vladeta Jovovic, Feb 12 2003
G.f.: (1-x^2)/((1-x-x^2)(1-2x^2)). - Paul Barry, Jan 13 2005
A171886 Numbers n such that A008949(n) is a power of 2.
0, 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 17, 20, 21, 27, 28, 29, 31, 35, 36, 44, 45, 49, 54, 55, 65, 66, 71, 77, 78, 90, 91, 97, 104, 105, 119, 120, 121, 127, 135, 136, 152, 153, 161, 170, 171, 189, 190, 199, 209, 210, 230, 231, 241, 252, 253, 275, 276, 279, 287, 299
Offset: 1
Keywords
Comments
Partial sums of binomial coefficients were considered in section 2.2 of the 1964 paper by Leech. The presence of the number 279 corresponds to the existence of the Golay perfect code of length 23.
In general, A000217(n+1)+i-1 is in this sequence IFF the first i items in row n of Pascal's triangle add up to a power of 2.
Almost all members of this sequence are "trivial" terms of four types: A000217(i); A000217(i)+1, A000217(i)+i, and A000217(2i+1)+i for all integers i. 279 is the sole nontrivial term.
The existence of members of this sequence is of course crucial in the study of the existence of perfect binary codes - see the references. - N. J. A. Sloane, Nov 24 2010
a(230) = 4097 is another nontrivial term, see example. - Reinhard Zumkeller, Aug 08 2013
Examples
17 is in the sequence because A008949(17)=16, which in turn is because the first 3 elements of row 5 of Pascal's triangle, 1+5+10, add up to 16. 279 is in the sequence because the first 4 elements of row 24 of Pascal's triangle add up to 2^11: 1+23+253+1771=2048. 4097 is in the sequence because the first 3 elements of row 91 of Pascal's triangle add up to 2^12: 1 + 90 + 4005 = 4096. - _Reinhard Zumkeller_, Aug 08 2013
References
- M. R. Best, Perfect codes hardly exist. IEEE Trans. Inform. Theory 29 (1983), no. 3, 349-351.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
- John Leech, ``Some Sphere Packings in Higher Space'', Can. J. Math., 16 (1964), page 669.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.
- A. Tietavainen, On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24 (1973), 88-96.
- J. H. van Lint, A survey of perfect codes. Rocky Mountain J. Math. 5 (1975), 199-224.
- J. H. van Lint, Recent results on perfect codes and related topics, in Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), pp. 158-178. Math. Centre Tracts, No. 55, Math. Centrum, Amsterdam, 1974.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- John Leech, Some Sphere Packings in Higher Space (PDF available from the publisher).
Programs
-
Haskell
import Data.List (elemIndices) a171886 n = a171886_list !! (n-1) a171886_list = elemIndices 1 $ map a209229 $ concat a008949_tabl -- Reinhard Zumkeller, Aug 08 2013
Extensions
Edited by N. J. A. Sloane, Oct 18 2010
Offset changed by Reinhard Zumkeller, Aug 08 2013
A193603 Augmentation of the triangle A008949. See Comments.
1, 1, 2, 1, 5, 8, 1, 9, 30, 44, 1, 14, 77, 212, 296, 1, 20, 163, 700, 1712, 2312, 1, 27, 305, 1877, 6882, 15476, 20384, 1, 35, 523, 4365, 22380, 73240, 154424, 199376, 1, 44, 840, 9134, 62479, 280630, 841312, 1683992, 2138336
Offset: 0
Comments
Examples
First five rows of A193603: 1 1...2 1...5....8 1...9...30....44 1...14...77..212...296
Programs
-
Mathematica
p[n_, k_] := Sum[Binomial[n, h], {h, 0, k}] (* A008949 *) Table[p[n, k], {n, 0, 5}, {k, 0, n}] m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] TableForm[m[4]] w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; v[n_] := v[n - 1].m[n] TableForm[Table[v[n], {n, 0, 6}]] (* A193603 *) Flatten[Table[v[n], {n, 0, 8}]]
A375571 a(n) is the unique integer k such that A008949(A375570(n),k) = n.
0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 5, 6, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
A382816 a(n) = number of occurrences of n in A008949.
1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2
Keywords
Comments
Numbers that occur exactly 2 times: (4, 7, 8, 11, 15, 22, 26, 29, 31, 32, 37, 42, 46, 56, 57, 63, 67, 79, 92, 93, 99, 106,...)
Numbers that occur exactly 3 times: (16, 64, 232, 256, 466, 562, 1024, 1486, 2048,...)
The least number that occurs exactly 4 times is 4096.
Examples
The numbers in A008949 (partial sums of Pascal's triangle) begin thus: 1 1 2 1 3 4 1 4 7 8 1 5 11 15 16 1 6 16 26 31 32 1 7 22 42 57 63 64 one 2, one 3, two 4's, etc.
Programs
-
Mathematica
t = Flatten[Accumulate/@Table[Binomial[n, i], {n, 0, 200}, {i, 0, n}]]; (* A008949 *) Flatten[Table[Count[t, n], {n, 2, 200}]]
-
PARI
row(n) = my(v=vector(n+1, k, binomial(n,k-1))); vector(#v, k, sum(i=1, k, v[i])); a(n) = sum (i=1, n+1, #select(x->(x==n), row(i))); \\ Michel Marcus, Apr 13 2025
A376335 Irregular triangle read by rows: T(n,k) = A008949(n-1,k) if 0 <= k <= n - 2 otherwise A008949(n-1,2*n-4-k) if n - 2 <= k <= 2*n - 4.
1, 1, 3, 1, 1, 4, 7, 4, 1, 1, 5, 11, 15, 11, 5, 1, 1, 6, 16, 26, 31, 26, 16, 6, 1, 1, 7, 22, 42, 57, 63, 57, 42, 22, 7, 1, 1, 8, 29, 64, 99, 120, 127, 120, 99, 64, 29, 8, 1, 1, 9, 37, 93, 163, 219, 247, 255, 247, 219, 163, 93, 37, 9, 1, 1, 10, 46, 130, 256, 382, 466, 502, 511, 502, 466, 382, 256, 130, 46, 10, 1
Offset: 2
Examples
The triangle begins as: 1; 1, 3, 1; 1, 4, 7, 4, 1; 1, 5, 11, 15, 11, 5, 1; 1, 6, 16, 26, 31, 26, 16, 6, 1; 1, 7, 22, 42, 57, 63, 57, 42, 22, 7, 1; ...
Links
- Nsibiet E. Udo, Praise Adeyemo, Balazs Szendroi, and Stavros Argyrios Papadakis, Ideals, representations and a symmetrised Bernoulli triangle, arXiv:2409.10278 [math.AC], 2024. See p. 2.
Programs
-
Mathematica
b[n_,k_]:=Sum[Binomial[n,j],{j,0,k}]; T[n_,k_]:=If[0<=k<=n-2,b[n-1,k],b[n-1,2n-4-k]]; Table[T[n,k],{n,2,10},{k,0,2n-4}]//Flatten
Formula
Sum_{k=0..2*n-4} T(n,k) = A000337(n-1). [Udo et al.]
Comments