A167193
a(n) = (1/3)*(1 - (-2)^n + 3*(-1)^n ) = (-1)^(n+1)*A167030(n).
Original entry on oeis.org
1, 0, 0, 2, -4, 10, -20, 42, -84, 170, -340, 682, -1364, 2730, -5460, 10922, -21844, 43690, -87380, 174762, -349524, 699050, -1398100, 2796202, -5592404, 11184810, -22369620, 44739242, -89478484, 178956970, -357913940, 715827882, -1431655764, 2863311530, -5726623060, 11453246122, -22906492244, 45812984490
Offset: 0
-
[( 1-(-1)^n*2^n)/3+(-1)^n: n in [0..40] ]; // Vincenzo Librandi, Aug 06 2011
-
LinearRecurrence[{-2,1,2},{1,0,0}, 25] (* or *) Table[(1/3)*(1 + 3*(-1)^n - (-2)^n), {n,0,25}] (* G. C. Greubel, Jun 04 2016 *)
A026644
a(n) = a(n-1) + 2*a(n-2) + 2, for n>=3, where a(0)= 1, a(1)= 2, a(2)= 4.
Original entry on oeis.org
1, 2, 4, 10, 20, 42, 84, 170, 340, 682, 1364, 2730, 5460, 10922, 21844, 43690, 87380, 174762, 349524, 699050, 1398100, 2796202, 5592404, 11184810, 22369620, 44739242, 89478484, 178956970, 357913940, 715827882, 1431655764, 2863311530, 5726623060
Offset: 0
- Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991.
- Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Thomas Baruchel, Properties of the cumulated deficient binary digit sum, arXiv:1908.02250 [math.NT], 2019.
- Sela Fried, Economically solving the Tower of Hanoi puzzle.
- Nicolas Gastineau and O. Togni, On S-packing edge-colorings of cubic graphs, arXiv preprint arXiv:1711.10906 [cs.DM], 2017.
- Lee Hae-hwang, Illustration of initial terms in terms of rosemary plants
- Krzysztof A. Meissner, Black hole entropy in Loop Quantum Gravity, arXiv:gr-qc/0407052, 2004.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
A167030 is an essentially identical sequence.
-
[n eq 0 select 1 else (2^(n+2) -3-(-1)^n)/3 : n in [0..40]]; // G. C. Greubel, Jun 28 2024
-
f:=n-> if n mod 2 = 0 then (2^(n+2)-4)/3 else (2^(n+2)-2)/3; fi;
-
Join[{1}, Floor[(2^Range[3, 40] - 2)/3]] (* or *) LinearRecurrence[{2,1,-2},{1,2,4,10},40] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
CoefficientList[Series[(1-x^2+2x^3)/((1-x)(1-x-2x^2)),{x,0,1001}],x] (* Vincenzo Librandi, Apr 04 2012 *)
-
Vec((1-x^2+2*x^3)/(1-x)/(1-x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Apr 04 2012
-
def A026644(n): return ((4<Chai Wah Wu, Apr 17 2025
-
[(2^(n+2)-3-(-1)^n)/3 + int(n==0) for n in range(41)] # G. C. Greubel, Jun 28 2024
Recurrence in definition line found by
Lee Hae-hwang, Apr 03 2002
Original entry on oeis.org
1, 2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532, 5726623062
Offset: 0
- V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]
A153772
a(n) = (2^n + 2*(-1)^n - 6)/3.
Original entry on oeis.org
-1, -2, 0, 0, 4, 8, 20, 40, 84, 168, 340, 680, 1364, 2728, 5460, 10920, 21844, 43688, 87380, 174760, 349524, 699048, 1398100, 2796200, 5592404, 11184808, 22369620, 44739240, 89478484, 178956968, 357913940, 715827880
Offset: 0
-
[2^n/3 +2*(-1)^n/3-2: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
-
Table[(2^n + 2*(-1)^n - 6)/3, {n,0,25}] (* or *) LinearRecurrence[{2, 1, -2}, {-1, -2, 0}, 25] (* G. C. Greubel, Aug 27 2016 *)
-
a(n)=(2^n+2*(-1)^n-6)/3 \\ Charles R Greathouse IV, Aug 28 2016
A293961
Number T(n,k) of linear chord diagrams having n chords and maximal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 4, 10, 0, 1, 10, 24, 70, 0, 1, 20, 82, 212, 630, 0, 1, 42, 300, 798, 2324, 6930, 0, 1, 84, 894, 3800, 10078, 30188, 90090, 0, 1, 170, 2744, 18186, 51804, 150046, 452724, 1351350, 0, 1, 340, 8594, 71624, 313006, 851692, 2545390, 7695828, 22972950
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 4, 10;
0, 1, 10, 24, 70;
0, 1, 20, 82, 212, 630;
0, 1, 42, 300, 798, 2324, 6930;
0, 1, 84, 894, 3800, 10078, 30188, 90090;
0, 1, 170, 2744, 18186, 51804, 150046, 452724, 1351350;
...
A257198
Number of permutations of length n having exactly one descent such that the first element of the permutation is an odd number.
Original entry on oeis.org
0, 0, 2, 6, 16, 36, 78, 162, 332, 672, 1354, 2718, 5448, 10908, 21830, 43674, 87364, 174744, 349506, 699030, 1398080, 2796180, 5592382, 11184786, 22369596, 44739216, 89478458, 178956942, 357913912, 715827852, 1431655734, 2863311498, 5726623028
Offset: 1
a(3)=2: (1 3 2, 3 1 2).
a(4)=6: (1 2 4 3, 1 3 2 4, 1 4 2 3, 1 3 4 2, 3 1 2 4, 3 4 1 2).
-
[2*Floor((2*2^n-3*n-1)/6): n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
-
Table[2 Floor[(2 2^n - 3 n - 1) / 6], {n, 50}] (* Vincenzo Librandi, Apr 18 2015 *)
-
concat([0,0], Vec(-2*x^3/((x-1)^2*(x+1)*(2*x-1)) + O(x^100))) \\ Colin Barker, Apr 19 2015
-
a(n)=(2<Charles R Greathouse IV, Apr 21 2015
Showing 1-6 of 6 results.
Comments