cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007680 a(n) = (2n+1)*n!.

Original entry on oeis.org

1, 3, 10, 42, 216, 1320, 9360, 75600, 685440, 6894720, 76204800, 918086400, 11975040000, 168129561600, 2528170444800, 40537905408000, 690452066304000, 12449059983360000, 236887827111936000, 4744158915944448000, 99748982335242240000
Offset: 0

Views

Author

Keywords

Comments

Denominators in series for sqrt(Pi/4)*erf(x): sqrt(Pi/4)*erf(x)= x/1 - x^3/3 + x^5/10 - x^7/42 + x^9/216 -+ ...
Appears to be the BinomialMean transform of A000354 (after truncating the first term of A000354). (See A075271 for the definition of BinomialMean.) - John W. Layman, Apr 16 2003
Number of permutations p of {1,2,...,n+2} such that max|p(i)-i|=n+1. Example: a(1)=3 since only the permutations 312,231 and 321 of {1,2,3} satisfy the given condition. - Emeric Deutsch, Jun 04 2003
Stirling transform of A000670(n+1) = [3, 13, 75, 541, ...] is a(n) = [3, 10, 42, 216, ...]. - Michael Somos, Mar 04 2004
Stirling transform of a(n) = [2, 10, 42, 216, ...] is A052875(n+1) = [2, 12, 74, ...]. - Michael Somos, Mar 04 2004
A related sequence also arises in evaluating indefinite integrals of sec(x)^(2k+1), k=0, 1, 2, ... Letting u = sec(x) and d = sqrt(u^2-1), one obtains a(0) = log(u+d) 2*k*a(k) = (2*k-1)*u^(2*k-1)*d + a(k-1). Viewing these as polynomials in u gives 2^k*k!*a(k) = a(0) + d*Sum(i=0..k-1){ (2*i+1)*i!*2^i*u^(2*i+1) }, which is easily proved by induction. Apart from the power of 2, which could be incorporated into the definition of u (or by looking at erf(ix/2)/ i (i=sqrt(-1)), the sum's coefficients form our series and are the reciprocals of the power series terms for -sqrt(-Pi/4)*erf(ix/2)). This yields a direct but somewhat mysterious relationship between the power series of erf(x) and integrals involving sec(x). - William A. Huber (whuber(AT)quantdec.com), Mar 14 2002
When written in factoradic ("factorial base"), this sequence from a(1) onwards gives the smallest number containing two adjacent digits, increasing when read from left to right, whose difference is n-1. - Christian Perfect, May 03 2016
a(n-1)^2 is the number of permutations p of [1..2n] such that Sum_{i=1..2n} abs(p(i)-i) = 2n^2-2. - Fang Lixing, Dec 07 2018
A standard series for the calculation of coordinates on a clothoid (also called cornuspiral):
x = s*(a(0) - (tau^2/a(2)) + (tau^4/a(4)) - (tau^6/a(6)) + ...)
y = s*((tau/a(1)) + (tau^3/a(3)) - (tau^5/a(5)) + ...).
s is the arclength from the clothoids origin to the desired point p(x,y). The tangent at the clothoids origin intersects with the tangent at the point p(x,y) with an angle of tau. - Thomas Scheuerle, Oct 13 2021
a(n) = P_n(1) where P_n(x) is the Pidduck polynomials. - Michael Somos, May 27 2023

Examples

			G.f. = 1 + 3*x + 10*x^2 + 42*x^3 + 216*x^4 + 1320*x^5 + 9360*x^6 + ... - _Michael Somos_, Jan 01 2019
		

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Wirth, Systematisches Programmieren, 1975, exercise 9.3

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Appears in A167546.
Equals the rows sums of A167556.
(End)

Programs

  • GAP
    a:=List([0..20],n->(2*n+1)*Factorial(n));; Print(a); # Muniru A Asiru, Jan 01 2019
  • Magma
    [(2*n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    [(2*n+1)*factorial(n)$n=0..20]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[(2n + 1)*n!, {n, 0, 20}] (* Stefan Steinerberger, Apr 08 2006 *)
  • PARI
    {a(n) = if( n<0, 0, (2*n+1) * n!)}; /* Michael Somos, Mar 04 2004 */
    

Formula

E.g.f.: (1+x)/(1-x)^2.
This is the binomial mean transform of A000354 (after truncating the first term). See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
E.g.f.: (of aerated sequence) 1+x^2/2+sqrt(pi)*(x+x^3/4)*exp(x^2/4)*ERF(x/2). - Paul Barry, Apr 11 2010
G.f.: 1 + x*G(0), where G(k)= 1 + x*(k+1)/(1 - (k+2)/(k+2 + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
a(n-2) = (A208528(n)+A208529(n))/2, for n>=2. - Luis Manuel Rivera Martínez, Mar 05 2014
D-finite with recurrence: (-2*n+1)*a(n) +n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 27 2020
Sum_{n>=0} 1/a(n) = sqrt(Pi)*erfi(1)/2 = A019704 * A099288 = A347910. - Amiram Eldar, Oct 07 2020
Sum_{n>=0} (-1)^n/a(n) = A347909 . - R. J. Mathar, Sep 30 2021

A064455 a(2n) = 3n, a(2n-1) = n.

Original entry on oeis.org

1, 3, 2, 6, 3, 9, 4, 12, 5, 15, 6, 18, 7, 21, 8, 24, 9, 27, 10, 30, 11, 33, 12, 36, 13, 39, 14, 42, 15, 45, 16, 48, 17, 51, 18, 54, 19, 57, 20, 60, 21, 63, 22, 66, 23, 69, 24, 72, 25, 75, 26, 78, 27, 81, 28, 84, 29, 87, 30, 90, 31, 93, 32, 96, 33, 99, 34, 102, 35, 105, 36, 108
Offset: 1

Views

Author

N. J. A. Sloane, Oct 02 2001

Keywords

Comments

Also number of 1's in n-th row of triangle in A071030. - Hans Havermann, May 26 2002
Number of ON cells at generation n of 1-D CA defined by Rule 54. - N. J. A. Sloane, Aug 09 2014
a(n)*A098557(n) equals the second right hand column of A167556. - Johannes W. Meijer, Nov 12 2009
Given a(1) = 1, for all n > 1, a(n) is the least positive integer not equal to a(n-1) such that the arithmetic mean of the first n terms is an integer. The sequence of arithmetic means of the first 1, 2, 3, ..., terms is 1, 2, 2, 3, 3, 4, 4, ... (A004526 disregarding its first three terms). - Rick L. Shepherd, Aug 20 2013

Examples

			a(13) = a(2*7 - 1) = 7, a(14) = a(2*7) = 21.
a(8) = 8-9+10-11+12-13+14-15+16 = 12. - _Bruno Berselli_, Jun 05 2013
		

Crossrefs

Interleaving of A000027 and A008585 (without first term).

Programs

  • ARIBAS
    maxarg := 75; for n := 1 to maxarg do if n mod 2 = 1 then write((n+1) div 2, " ") else write((n div 2)*3," "); end; end;
    
  • GAP
    a:=[];;  for n in [1..75] do if n mod 2 = 0 then Add(a,3*n/2); else Add(a,(n+1)/2); fi; od; a; # Muniru A Asiru, Oct 28 2018
    
  • Haskell
    import Data.List (transpose)
    a064455 n = n + if m == 0 then n' else - n'  where (n',m) = divMod n 2
    a064455_list = concat $ transpose [[1 ..], [3, 6 ..]]
    -- Reinhard Zumkeller, Oct 12 2013
    
  • Magma
    [(1/2)*n*(-1)^n+n+(1/4)*(1-(-1)^n): n in [1..80]]; // Vincenzo Librandi, Aug 10 2014
    
  • Maple
    A064455 := proc(n)
        if type(n,'even') then
            3*n/2 ;
        else
            (n+1)/2 ;
        end if;
    end proc: # R. J. Mathar, Aug 03 2015
  • Mathematica
    Table[ If[ EvenQ[n], 3n/2, (n + 1)/2], {n, 1, 70} ]
  • PARI
    a(n) = { if (n%2, (n + 1)/2, 3*n/2) } \\ Harry J. Smith, Sep 14 2009
    
  • PARI
    a(n)=if(n<3,2*n-1,((n-1)*(n-2))%(2*n-1)) \\ Jim Singh, Oct 14 2018
    
  • Python
    def A064455(n): return (3*n - (2*n-1)*(n%2))//2
    print([A064455(n) for n in range(1,81)]) # G. C. Greubel, Jan 30 2025

Formula

a(n) = (1/2)*n*(-1)^n + n + (1/4)*(1 - (-1)^n). - Stephen Crowley, Aug 10 2009
G.f.: x*(1+3*x) / ( (1-x)^2*(1+x)^2 ). - R. J. Mathar, Mar 30 2011
From Jaroslav Krizek, Mar 22 2011: (Start)
a(n) = n - A123684(n-1) for odd n.
a(n) = n + a(n-1) for even n.
a(n) = A123684(n) + A137501(n).
Abs( a(n) - A123684(n) ) = A052928(n). (End)
a(n) = Sum_{i=n..2*n} i*(-1)^i. - Bruno Berselli, Jun 05 2013
a(n) = n + floor(n/2)*(-1)^(n mod 2). - Bruno Berselli, Dec 14 2015
a(n) = (n^2-3*n+2) mod (2*n-1) for n>2. - Jim Singh, Oct 31 2018
E.g.f.: (1/2)*(x*cosh(x) + (1+3*x)*sinh(x)). - G. C. Greubel, Jan 30 2025

A167546 The ED1 array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 6, 12, 7, 1, 24, 48, 32, 10, 1, 120, 240, 160, 62, 13, 1, 720, 1440, 960, 384, 102, 16, 1, 5040, 10080, 6720, 2688, 762, 152, 19, 1, 40320, 80640, 53760, 21504, 6144, 1336, 212, 22, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED1 array (m > n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED1 array (m <= n) were found with the recurrence relation, see below. We use for the array rows the letter n (>= 1) and for the array columns the letter m (>= 1).
Our procedure for finding the coefficients in the lower left triangle can be compared with the procedure that De Smit and Lenstra used to fill in the hole in the middle of 'The Print Gallery' by M. C. Escher, see the links. In this lithograph Escher made use of the so-called Droste effect, hence we propose to call this square array of numbers the ED1 array.
For the ED2, ED3 and ED4 arrays see A167560, A167572 and A167584.

Examples

			The ED1 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 4, 7, 10, 13, 16, 19, 22, 25, 28
2, 12, 32, 62, 102, 152, 212, 282, 362, 452
6, 48, 160, 384, 762, 1336, 2148, 3240, 4654, 6432
24, 240, 960, 2688, 6144, 12264, 22200, 37320, 59208, 89664
120, 1440, 6720, 21504, 55296, 122880, 245640, 452880, 783144, 1285536
		

Crossrefs

A000012, A016777, 2*A005891, A167547, A167548 and A167549 equal the first sixth rows of the array.
A000142 equals the first column of the array.
A167550 equals the a(n, n+1) diagonal of the array.
A047053 equals the a(n, n) diagonal of the array.
A167558 equals the a(n+1, n) diagonal of the array.
A167551 equals the row sums of the ED1 array read by antidiagonals.
A167552 is a triangle related to the a(n) formulas of rows of the ED1 array.
A167556 is a triangle related to the GF(z) formulas of the rows of the ED1 array.
A167557 is the lower left triangle of the ED1 array.
Cf. A068424 (the (m-1)!/(m-n-1)! factor), A007680 (the (2*n-1)*(n-1)! factor).
Cf. A167560 (ED2 array), A167572 (ED3 array), A167584 (ED4 array).

Programs

  • Maple
    nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n-1+m-1)!/(2*m-2)! od; for m from n+1 to mmax do a(n,m):= (2*n-1)*(n-1)! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
  • Mathematica
    nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n - 1 + m - 1)!/(2*m - 2)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = (2*n - 1)*(n - 1)! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)

Formula

a(n,m) = (2*(m-1)!/(m-n-1)!)*Integral_{y>=0} sinh(y*(2*n-1))/cosh(y)^(2*m-1) for m > n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
Sum_{k=0..n-1} (-1)^k*binomial(n-1,k)*a(n,m-k) = (2*n-1)*(n-1)!
which in its turn leads to, see also A167557,
a(n,m) = 4^(m-1)*(m-1)!*(n+m-2)!/(2*m-2)! for m <= n.

A062148 Second (unsigned) column sequence of triangle A062138 (generalized a=5 Laguerre).

Original entry on oeis.org

1, 14, 168, 2016, 25200, 332640, 4656960, 69189120, 1089728640, 18162144000, 319653734400, 5928123801600, 115598414131200, 2365321396838400, 50685458503680000, 1135354270482432000, 26538906072526848000, 646300418472124416000, 16372943934627151872000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Examples

			a(3) = (3+1)! * binomial(3+6,6) = 24 * 84 = 2016. - _Indranil Ghosh_, Feb 24 2017
		

Crossrefs

Cf. A001725 (first column of A062138).
Appears in the third left hand column of A167556 multiplied by 120. - Johannes W. Meijer, Nov 12 2009

Programs

  • Magma
    [Factorial(n+1)*Binomial(n+6,6): n in [0..30]]; // G. C. Greubel, Feb 06 2018
  • Mathematica
    Table[Sum[n!/6!, {i, 6, n}], {n, 6, 21}] (* Zerinvary Lajos, Jul 12 2009 *)
  • PARI
    a(n)=(n+1)!*binomial(n+6,6) \\ Indranil Ghosh, Feb 24 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r):return f(n)/f(r)/f(n-r)
    def A062148(n): return f(n+1)*C(n+6,6) # Indranil Ghosh, Feb 24 2017
    

Formula

E.g.f.: (1+6*x)/(1-x)^8.
a(n) = A062138(n+1, 1) = (n+1)!*binomial(n+6, 6).
If we define f(n,i,x)= Sum_{k=i..n}(Sum_{j=i..k}(binomial(k,j) *Stirling1(n,k)* Stirling2(j,i)*x^(k-j))) then a(n-1) = (-1)^(n-1) * f(n,1,-7), (n>=1). - Milan Janjic, Mar 01 2009
Assuming offset 1: a(n) = n!*binomial(-n,6). - Peter Luschny, Apr 29 2016
From Amiram Eldar, Sep 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 5477/10 - 204*e - 6*gamma + 6*Ei(1), where gamma is Euler's constant (A001620) and Ei(1) is the exponential integral at 1 (A091725).
Sum_{n>=0} (-1)^n/a(n) = 403/10 - 120/e + 6*gamma - 6*Ei(-1), where -Ei(-1) is the negated exponential integral at -1 (A099285). (End)

A098557 Expansion of e.g.f. (1/2)*(1+x)*log((1+x)/(1-x)).

Original entry on oeis.org

0, 1, 2, 2, 8, 24, 144, 720, 5760, 40320, 403200, 3628800, 43545600, 479001600, 6706022400, 87178291200, 1394852659200, 20922789888000, 376610217984000, 6402373705728000, 128047474114560000, 2432902008176640000, 53523844179886080000, 1124000727777607680000
Offset: 0

Views

Author

Paul Barry, Sep 14 2004

Keywords

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Cf. A109613 (odd numbers repeated).
Equals the first left hand column of A167552.
Equals the first right hand column of A167556.
A098557(n)*A064455(n) equals the second right hand column of A167556(n).
(End)

Programs

  • Magma
    [0,1] cat [Factorial(n-1) + Factorial(n-2)*(1+(-1)^n)/2: n in [2..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    Join[{0,1}, Table[(n-1)! + (n-2)!*(1+(-1)^n)/2, {n,2,30}]] (* or *) With[{nmax = 50}, CoefficientList[Series[(1/2)*(1 + x)*Log[(1 + x)/(1 - x)], {x,0,nmax}], x]*Range[0,nmax]!] (* G. C. Greubel, Jan 17 2018 *)
  • PARI
    for(n=0, 30, print1(if(n==0,0, if(n==1, 1, (n-1)! + (n-2)!*(1 + (-1)^n)/2)), ", ")) \\ G. C. Greubel, Jan 17 2018
    

Formula

a(n+1) = n! + (n-1)! * (1-(-1)^n)/2.
a(n+2) = 2*A052558(n).
conjecture: -a(n) +a(n-1) +(n-1)*(n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
G.f.: 1-G(0), where G(k)= 1 + x*(2*k-1)/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
Sum_{n>=1} 1/a(n) = sinh(1) + 1 = A073742 + 1. - Amiram Eldar, Jan 22 2023
Showing 1-5 of 5 results.