cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 50 results. Next

A003945 Expansion of g.f. (1+x)/(1-2*x).

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013

Crossrefs

Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.

Programs

  • Maple
    k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
    CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
  • PARI
    a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A190491 a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(2),3,1) and []=floor.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 1, 3, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 1, 3, 1, 2, 0, 2, 0, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 1, 2, 0, 2, 3, 1, 2, 0, 2, 0
Offset: 1

Views

Author

Clark Kimberling, May 11 2011

Keywords

Comments

Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,1): A190427-A190430
(sqrt(2),2,0): A190480, A120743, A170749
(sqrt(2),2,1): A190483-A190486
(sqrt(2),3,0): A190487-A190490
(sqrt(2),3,1): A190491-A190495
(sqrt(2),3,2): A190496-A190500

Crossrefs

Programs

  • Mathematica
    r = Sqrt[2]; b = 3; c = 1;
    f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
    t = Table[f[n], {n, 1, 200}]  (* A190491 *)
    Flatten[Position[t, 0]]   (* A190492 *)
    Flatten[Position[t, 1]]   (* A190493 *)
    Flatten[Position[t, 2]]   (* A190494 *)
    Flatten[Position[t, 3]]   (* A190495 *)

A163208 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731235, 21193200, 614237400, 17802288000, 515959239390, 14953916974920, 433405617680280, 12561286100120520, 364060598322527820, 10551476830837383840, 305810801346502707360, 8863237603561904401440
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[30,870,25230,731235];; for n in [5..20] do a[n]:=28*(a[n-1] + a[n-2]+a[n-3]) -406*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(406*t^4-28*t^3-28*t^2- 28*t+1), {t,0,20}], t] (* or *) LinearRecurrence[{28,28,28,-406}, {1,30, 870,25230,731235}, 20] (* G. C. Greubel, Dec 10 2016 *)
    coxG[{4, 406, -28}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
    
  • Sage
    ((1+x)*(1-x^4)/(1-29*x+434*x^4-406*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 28*(a(n-1) + a(n-2) + a(n-3)) - 406*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 29*x + 434*x^4 - 406*x^5). (End)

A163552 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21217995, 615309240, 17843602560, 517453877640, 15005855150160, 435160887802830, 12619407316577880, 365955317872798920, 10612486887830912280, 307755817292235608520, 8924735934026717183820
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    I:=[1,30,870,25230,731670,21217995]; [n le 6 select I[n] else 28*Self(n-1)+28*Self(n-2)+28*Self(n-3)+28*Self(n-4)-406*Self(n-5): n in [1..30]]; // Vincenzo Librandi, Apr 01 2017
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-29*x+434*x^5-406*x^6) )); // G. C. Greubel, May 16 2019
    
  • Mathematica
    CoefficientList[Series[(x^5+2*x^4+2*x^3+2*x^2+2*x+1)/(406*x^5-28*x^4 - 28*x^3-28*x^2-28*x+1), {x, 0, 20}], x] (* Wesley Ivan Hurt, Mar 31 2017 *)
    LinearRecurrence[{28,28,28,28,-406}, {1,30,870,25230,731670,21217995}, 20] (* Vincenzo Librandi, Apr 01 2017 *)
    coxG[{5, 406, -28}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-29*x+434*x^5-406*x^6)) \\ G. C. Greubel, Jul 28 2017
    
  • Sage
    ((1+x)*(1-x^5)/(1-29*x+434*x^5-406*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
a(n) = 28*a(n-1)+28*a(n-2)+28*a(n-3)+28*a(n-4)-406*a(n-5). - Wesley Ivan Hurt, May 11 2021

A164027 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334035, 17844674400, 517495192200, 15007349977200, 435212842037400, 12621163507344000, 366013483272687390, 10614383520144862920, 307816904736225416280, 8926683934263695000520
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[30, 870, 25230, 731670, 21218430, 615334035];; for n in [7..30] do a[n]:=28*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -406*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-29*t+434*t^6-406*t^7) )); // G. C. Greubel, Aug 10 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-29*t+434*t^6-406*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^6)/(1-29*t+434*t^6-406*t^7), {t,0,30}], t] (* G. C. Greubel, Sep 07 2017 *)
    coxG[{6,406,-28}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-29*t+434*t^6-406*t^7)) \\ G. C. Greubel, Sep 07 2017
    
  • Sage
    def A164027_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-29*t+434*t^6-406*t^7)).list()
    A164027_list(30) # G. C. Greubel, Aug 10 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
a(n) = -406*a(n-6) + 28*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021

A165515 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388395, 435214379250840, 12621216997908960, 366015292928763240, 10614443494626832560, 307818861335266403640, 8926746978464285228160
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388395];; for n in [10..20] do a[n]:=28*Sum([1..8], j-> a[n-j]) -406*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10) )); // G. C. Greubel, Oct 21 2018
    
  • Maple
    seq(coeff(series((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Sep 16 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10), {t,0,20}], t] (* G. C. Greubel, Oct 21 2018 *)
    coxG[{9, 406, -28}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10)) \\ G. C. Greubel, Oct 21 2018
    
  • Sage
    def A165515_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^9)/(1-29*t+434*t^9-406*t^10)).list()
    A165515_list(20) # G. C. Greubel, Sep 16 2019
    

Formula

G.f.: (t^9 +2*t^8 +2*t^7 +2*t^6 +2*t^5 +2*t^4 +2*t^3 +2*t^2 +2*t +1)/( 406*t^9 -28*t^8 -28*t^7 -28*t^6 -28*t^5 -28*t^4 -28*t^3 -28*t^2 -28*t + 1).

A166026 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379275635, 12621216998980800, 366015292970077800, 10614443496121659600, 307818861387220827000, 8926746980220492242400
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379275635];; for n in [11..30] do a[n]:=28*Sum([1..9], j-> a[n-j]) - 406*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Dec 05 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11) )); // G. C. Greubel, Dec 05 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Dec 05 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11), {t,0,30}], t] (* G. C. Greubel, Apr 21 2016 *)
    coxG[{10,406,-28}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 13 2020 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11)) \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    def A166026_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-29*t+334*t^10-406*t^11)).list()
    A166026_list(30) # G. C. Greubel, Dec 05 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A166424 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999005595, 366015292971149640, 10614443496162974160, 307818861388715654040, 8926746980272446665760
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    Coefficients(R!( (1+x)*(1-x^11)/(1-29*x+434*x^11-406*x^12) )); // G. C. Greubel, Jul 25 2024
    
  • Mathematica
    With[{p=406, q=28}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 13 2016; Jul 25 2024 *)
    coxG[{11,406,-28}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 12 2016 *)
  • SageMath
    def A166424_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^11)/(1-29*x+434*x^11-406*x^12) ).list()
    A166424_list(30) # G. C. Greubel, Jul 25 2024

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
From G. C. Greubel, Jul 25 2024: (Start)
a(n) = 28*Sum_{j=1..10} a(n-j) - 406*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 29*x + 434*x^11 - 406*x^12). (End)

A166617 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174435, 10614443496164046000, 307818861388756968600, 8926746980273941492800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    coxG[{12,406,-28}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 21 2015 *)
    CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 19 2016 *)

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^12 - 28*t^11 - 28*t^10 - 28*t^9 -28*t^8 -28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t +1).

A167083 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164070795, 307818861388758040440, 8926746980273982807360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 01 2016 *)

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
Showing 1-10 of 50 results. Next