cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002064 Cullen numbers: a(n) = n*2^n + 1.

Original entry on oeis.org

1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, 92274689, 192937985, 402653185, 838860801, 1744830465, 3623878657, 7516192769, 15569256449, 32212254721, 66571993089
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A084859. Inverse binomial transform is A004277. - Paul Barry, Jun 12 2003
Let A be the Hessenberg matrix of order n defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1] =-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 26 2010
Indices of primes are listed in A005849. - M. F. Hasler, Jan 18 2015
Add the list of fractions beginning with 1/2 + 3/4 + 7/8 + ... + (2^n - 1)/2^n and take the sums pairwise from left to right. For 1/2 + 3/4 = 5/4, 5 + 4 = 9 = a(2); for 5/4 + 7/8 = 17/8, 17 + 8 = 25 = a(3); for 17/8 + 15/16 = 49/16, 49 + 16 = 65 = a(4); for 49/16 + 31/32 = 129/32, 129 + 32 = 161 = a(5). For each pairwise sum a/b, a + b = n*2^(n+1). - J. M. Bergot, May 06 2015
Number of divisors of (2^n)^(2^n). - Gus Wiseman, May 03 2021
Named after the Irish Jesuit priest James Cullen (1867-1933), who checked the primality of the terms up to n=100. - Amiram Eldar, Jun 05 2021

Examples

			G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - _Michael Somos_, Jul 18 2018
		

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • R. K. Guy, Unsolved Problems in Number Theory, B20.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 240-242.
  • W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal k = n + 1 of A046688.
A000005 counts divisors of n.
A000312 = n^n.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.
A173339 lists positions of squares in A062319.
A188385 gives the highest prime exponent in n^n.
A249784 counts divisors of n^n^n.

Programs

Formula

a(n) = 4a(n-1) - 4a(n-2) + 1. - Paul Barry, Jun 12 2003
a(n) = sum of row (n+1) of triangle A130197. Example: a(3) = 25 = (12 + 8 + 4 + 1), row 4 of A130197. - Gary W. Adamson, May 16 2007
Row sums of triangle A134081. - Gary W. Adamson, Oct 07 2007
Equals row sums of triangle A143038. - Gary W. Adamson, Jul 18 2008
Equals row sums of triangle A156708. - Gary W. Adamson, Feb 13 2009
G.f.: -(1-2*x+2*x^2)/((-1+x)*(2*x-1)^2). a(n) = A001787(n+1)+1-A000079(n). - R. J. Mathar, Nov 16 2007
a(n) = 1 + 2^(n + log_2(n)) ~ 1 + A000079(n+A004257(n)). a(n) ~ A000051(n+A004257(n)). - Jonathan Vos Post, Jul 20 2008
a(0)=1, a(1)=3, a(2)=9, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - Harvey P. Dale, Oct 13 2011
a(n) = A036289(n) + 1 = A003261(n) + 2. - Reinhard Zumkeller, Mar 16 2013
E.g.f.: 2*x*exp(2*x) + exp(x). - Robert Israel, Dec 12 2014
a(n) = 2^n * A000325(n) = 4^n * A186947(-n) for all n in Z. - Michael Somos, Jul 18 2018
a(n) = Sum_{i=0..n-1} a(i) + A000325(n+1). - Ivan N. Ianakiev, Aug 07 2019
a(n) = sigma((2^n)^(2^n)) = A000005(A057156(n)) = A062319(2^n). - Gus Wiseman, May 03 2021
Sum_{n>=0} 1/a(n) = A340841. - Amiram Eldar, Jun 05 2021

Extensions

Edited by M. F. Hasler, Oct 31 2012

A062319 Number of divisors of n^n, or of A000312(n).

Original entry on oeis.org

1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
Offset: 0

Views

Author

Jason Earls, Jul 05 2001

Keywords

Comments

From Gus Wiseman, May 02 2021: (Start)
Conjecture: The number of divisors of n^n equals the number of pairwise coprime ordered n-tuples of divisors of n. Confirmed up to n = 30. For example, the a(1) = 1 through a(5) = 6 tuples are:
(1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1)
(1,2) (1,1,3) (1,1,1,2) (1,1,1,1,5)
(2,1) (1,3,1) (1,1,1,4) (1,1,1,5,1)
(3,1,1) (1,1,2,1) (1,1,5,1,1)
(1,1,4,1) (1,5,1,1,1)
(1,2,1,1) (5,1,1,1,1)
(1,4,1,1)
(2,1,1,1)
(4,1,1,1)
The unordered case (pairwise coprime n-multisets of divisors of n) is counted by A343654.
(End)

Examples

			From _Gus Wiseman_, May 02 2021: (Start)
The a(1) = 1 through a(5) = 6 divisors:
  1  1  1   1    1
     2  3   2    5
     4  9   4    25
        27  8    125
            16   625
            32   3125
            64
            128
            256
(End)
		

Crossrefs

Number of divisors of A000312(n).
Taking Omega instead of sigma gives A066959.
Positions of squares are A173339.
Diagonal n = k of the array A343656.
A000005 counts divisors.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
- A018892 counts coprime pairs of divisors.
- A084422 counts pairwise coprime subsets of {1..n}.
- A100565 counts pairwise coprime triples of divisors.
- A225520 counts pairwise coprime sets of divisors.
- A343652 counts maximal pairwise coprime sets of divisors.
- A343653 counts pairwise coprime non-singleton sets of divisors > 1.
- A343654 counts pairwise coprime sets of divisors > 1.

Programs

  • Magma
    [NumberOfDivisors(n^n): n in  [0..60]]; // Vincenzo Librandi, Nov 09 2014
    
  • Mathematica
    A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *)
    Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
  • PARI
    je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je
    
  • PARI
    { for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
    
  • PARI
    a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = A000005(A000312(n)). - Enrique Pérez Herrero, Nov 09 2010
a(2^n) = A002064(n). - Gus Wiseman, May 02 2021
a(prime(n)) = prime(n) + 1. - Gus Wiseman, May 02 2021
a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - Gus Wiseman, May 02 2021
a(n) = Sum_{d|n} n^omega(d) for n > 0. - Seiichi Manyama May 12 2021
Showing 1-2 of 2 results.