cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A195326 Numerators of fractions leading to e - 1/e (A174548).

Original entry on oeis.org

0, 2, 2, 7, 7, 47, 47, 5923, 5923, 426457, 426457, 15636757, 15636757, 7318002277, 7318002277, 1536780478171, 1536780478171, 603180793741, 603180793741, 142957467201379447, 142957467201379447
Offset: 0

Views

Author

Paul Curtz, Oct 12 2011

Keywords

Comments

The sequence of approximations of exp(1) obtained by truncating the Taylor series of exp(x) after n terms is A061354(n)/A061355(n) = 1, 2, 5/2, 8/3, 65/24, ...
A Taylor series of exp(-1) is 1, 0, 1/2, 1/3, 3/8, ... and (apart from the first 2 terms) given by A000255(n)/A001048(n). Subtracting both sequences term by term we obtain a series for exp(1) - exp(-1) = 0, 2, 2, 7/3, 7/3, 47/20, 47/20, 5923/2520, 5923/2520, 426457/181440, 426457/181440, ... which defines the numerators here.
Each second of the denominators (that is 3, 2520, 19958400, ...) is found in A085990 (where each third term, that is 60, 19958400, ...) is to be omitted.
This numerator sequence here is basically obtained by doubling entries of A051397, A009628, A087208, or A186763, caused by the standard associations between cosh(x), sinh(x) and exp(x).

Examples

			a(0) =  1  -  1;
a(1) =  2  -  0;
a(2) = 5/2 - 1/2.
		

Crossrefs

Programs

  • Maple
    taylExp1 := proc(n)
            add(1/j!,j=0..n) ;
    end proc:
    A000255 := proc(n)
            if n <=1 then
                    1;
            else
                    n*procname(n-1)+(n-1)*procname(n-2) ;
            end if;
    end proc:
    A001048 := proc(n)
            n!+(n-1)! ;
    end proc:
    A195326 := proc(n)
            if n = 0 then
                    0;
            elif n =1 then
                    2;
            else
                    taylExp1(n) -A000255(n-2)/A001048(n-1);
            end if;
              numer(%);
    end proc:
    seq(A195326(n),n=0..20) ; # R. J. Mathar, Oct 14 2011

Extensions

Material meant to be placed in other sequences removed by R. J. Mathar, Oct 14 2011

A073742 Decimal expansion of sinh(1).

Original entry on oeis.org

1, 1, 7, 5, 2, 0, 1, 1, 9, 3, 6, 4, 3, 8, 0, 1, 4, 5, 6, 8, 8, 2, 3, 8, 1, 8, 5, 0, 5, 9, 5, 6, 0, 0, 8, 1, 5, 1, 5, 5, 7, 1, 7, 9, 8, 1, 3, 3, 4, 0, 9, 5, 8, 7, 0, 2, 2, 9, 5, 6, 5, 4, 1, 3, 0, 1, 3, 3, 0, 7, 5, 6, 7, 3, 0, 4, 3, 2, 3, 8, 9, 5, 6, 0, 7, 1, 1, 7, 4, 5, 2, 0, 8, 9, 6, 2, 3, 3, 9, 1, 8, 4, 0, 4, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019
Decimal expansion of u > 0 such that 1 = arclength on the hyperbola y^2 - x^2 = 1 from (0,0) to (u,y(u)). - Clark Kimberling, Jul 04 2020

Examples

			1.17520119364380145688238185059...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:7 at page 20.

Crossrefs

Cf. A068139 (continued fraction), A073743, A073744, A073745, A073746, A073747, A049469, A049470, A174548.

Programs

  • Mathematica
    First@ RealDigits@ N[Sinh@ 1, 120] (* Michael De Vlieger, Sep 04 2016 *)
  • PARI
    sinh(1)

Formula

Equals (e - e^(-1))/2.
Equals sin(i)/i. - N. J. A. Sloane, Feb 12 2010
Equals Sum_{n>=0} 1/A009445(n). See Gradsteyn-Ryzhik (0.245.6.) - R. J. Mathar, Oct 27 2012
Continued fraction representation: sinh(1) = 1 + 1/(6 - 6/(21 - 20/(43 - 42/(73 - ... - (2*n - 1)*(2*n - 2)/((2*n*(2*n + 1) + 1) - ... ))))). See A051397 for proof. Cf. A049469. - Peter Bala, Sep 02 2016
Equals Product_{k>=1} 1 + 1/(k * Pi)^2. - Amiram Eldar, Jul 16 2020
Equals 1/A073745 = A174548/2. - Hugo Pfoertner, Dec 27 2024

A052558 a(n) = n! *((-1)^n + 2*n + 3)/4.

Original entry on oeis.org

1, 1, 4, 12, 72, 360, 2880, 20160, 201600, 1814400, 21772800, 239500800, 3353011200, 43589145600, 697426329600, 10461394944000, 188305108992000, 3201186852864000, 64023737057280000, 1216451004088320000, 26761922089943040000, 562000363888803840000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Stirling transform of (-1)^(n+1)*a(n-1) = [1, -1, 4, -12, 72, -360, ...] is A052841(n-1) = [1,0,2,6,38,270,...]. - Michael Somos, Mar 04 2004
The Stirling transform of this sequence is A258369. - Philippe Deléham, May 17 2005; corrected by Ilya Gutkovskiy, Jul 25 2018
Ignoring reflections, this is the number of ways of connecting n+2 equally-spaced points on a circle with a path of n+1 line segments. See A030077 for the number of distinct lengths. - T. D. Noe, Jan 05 2007
From Gary W. Adamson, Apr 20 2009: (Start)
Signed: (+ - - + + - - + +, ...) = eigensequence of triangle A002260.
Example: -360 = (1, 1, -1, -4, 12, 71) dot (1, -2, 3, -4, 5, -6) = (1, -2, -3, 16, 60, -432). (End)
a(n) is the number of odd fixed points in all permutations of {1, 2, ..., n+1}, Example: a(2)=4 because we have 1'23', 1'32, 312, 213', 231, and 321, where the odd fixed points are marked. - Emeric Deutsch, Jul 18 2009
a(n) is also the number of permutations of [n+1] starting with an even number. - Olivier Gérard, Nov 07 2011

Crossrefs

Cf. A002260. - Gary W. Adamson, Apr 20 2009
Cf. A052591. - Emeric Deutsch, Jul 18 2009
Cf. A052618, A077611, A199495. - Olivier Gérard, Nov 07 2011

Programs

  • GAP
    List([0..30], n-> ((-1)^n +2*n +3)*Factorial(n)/4); # G. C. Greubel, May 07 2019
  • Magma
    [((-1)^n +2*n +3)*Factorial(n)/4: n in [0..30]]; // G. C. Greubel, May 07 2019
    
  • Maple
    spec := [S,{S=Prod(Sequence(Z),Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[n!((-1)^n+2n+3)/4,{n,0,30}] (* Harvey P. Dale, Aug 16 2014 *)
  • PARI
    a(n)=if(n<0,0,(1+n\2)*n!)
    
  • PARI
    a(n)=if(n<0, 0, n!*polcoeff(1/(1-x)/(1-x^2)+x*O(x^n), n))
    
  • Sage
    [((-1)^n +2*n +3)*factorial(n)/4 for n in (0..30)] # G. C. Greubel, May 07 2019
    

Formula

D-finite with recurrence a(n) = a(n-1) + (n^2-1)*a(n-2), with a(1)=1, a(0)=1.
a(n) = ((-1)^n + 2*n + 3)*n!/4.
Let u(1)=1, u(n) = Sum_{k=1..n-1} u(k)*k*(-1)^(k-1) then a(n) = abs(u(n+2)). - Benoit Cloitre, Nov 14 2003
E.g.f.: 1/((1-x)*(1-x^2)).
From Emeric Deutsch, Jul 18 2009: (Start)
a(n) = (n+1)!/2 if n is odd; a(n) = n!(n+2)/2 if n is even.
a(n) = (n+1)! - A052591(n). (End)
E.g.f.: G(0)/(1+x) where G(k) = 1 + 2*x*(k+1)/((2*k+1) - x*(2*k+1)*(2*k+3)/(x*(2*k+3) + 2*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 21 2012
Sum_{n>=0} 1/a(n) = e - 1/e = 2*sinh(1) (A174548). - Amiram Eldar, Jan 22 2023

A344317 a(n) = n*a(n-1) + n^(1+n mod 2), a(0) = 1.

Original entry on oeis.org

1, 2, 6, 19, 80, 401, 2412, 16885, 135088, 1215793, 12157940, 133737341, 1604848104, 20863025353, 292082354956, 4381235324341, 70099765189472, 1191696008221025, 21450528147978468, 407560034811590893, 8151200696231817880, 171175214620868175481
Offset: 0

Views

Author

Alois P. Heinz, May 14 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(1+n mod 2) end: a(0):= 1:
    seq(a(n), n=0..23);

Formula

E.g.f.: (1+(x+1)*sinh(x))/(1-x).
a(n) = A155521(n-1) + A344262(n) for n > 0.
Lim_{n->infinity} a(n)/n! = 1+2*sinh(1) = 1+e-1/e = 1+A174548. - Amrit Awasthi, May 19 2021

A197222 Numerators of convergents to e - 1/e.

Original entry on oeis.org

2, 5, 7, 40, 47, 275, 597, 872, 3213, 36215, 111858, 148073, 704150, 6485423, 7189573, 49622861, 56812434, 220060163, 716992923, 937053086, 4465205267, 9867463620, 14332668887, 24200132507, 86933066408, 111133198915, 420332663153, 1792463851527
Offset: 1

Views

Author

T. D. Noe, Oct 12 2011

Keywords

Crossrefs

Cf. A174548 (decimal), A197223 (denominators).

Programs

  • Mathematica
    Numerator[Convergents[E - 1/E, 40]]

A197223 Denominator of convergents to e - 1/e.

Original entry on oeis.org

1, 2, 3, 17, 20, 117, 254, 371, 1367, 15408, 47591, 62999, 299587, 2759282, 3058869, 21112496, 24171365, 93626591, 305051138, 398677729, 1899762054, 4198201837, 6097963891, 10296165728, 36986461075, 47282626803, 178834341484, 762619992739, 941454334223
Offset: 1

Views

Author

T. D. Noe, Oct 12 2011

Keywords

Crossrefs

Cf. A174548 (decimal), A197222 (numerators).

Programs

  • Mathematica
    Denominator[Convergents[E - 1/E, 40]]

A344418 a(n) = n*a(n-1) + n^(1+n mod 2), a(0) = 0.

Original entry on oeis.org

0, 1, 4, 13, 56, 281, 1692, 11845, 94768, 852913, 8529140, 93820541, 1125846504, 14636004553, 204904063756, 3073560956341, 49176975301472, 836008580125025, 15048154442250468, 285914934402758893, 5718298688055177880, 120084272449158735481, 2641853993881492180604
Offset: 0

Views

Author

Alois P. Heinz, May 17 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(1+n mod 2) end: a(0):= 0:
    seq(a(n), n=0..23);

Formula

E.g.f.: (x+1)*sinh(x)/(1-x).
a(n) = A344317(n) - n! = A344317(n) - A000142(n).
a(n) = A155521(n-1) + A344419(n) for n > 0.
Lim_{n-> infinity} a(n)/n! = 2*sinh(1) = 2*A073742 = e-1/e = A174548. - Amrit Awasthi, May 20 2021
Showing 1-7 of 7 results.