cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A141056 1 followed by A027760, a variant of Bernoulli number denominators.

Original entry on oeis.org

1, 2, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2, 64722, 2, 30, 2, 4686
Offset: 0

Views

Author

Paul Curtz, Aug 01 2008

Keywords

Comments

The denominators of the Bernoulli numbers for n>0. B_n sequence begins 1, -1/2, 1/6, 0/2, -1/30, 0/2, 1/42, 0/2, ... This is an alternative version of A027642 suggested by the theorem of Clausen. - Peter Luschny, Apr 29 2009
Let f(n,k) = gcd { multinomial(n; n1, ..., nk) | n1 + ... + nk = n }; then a(n) = f(N,N-n+1)/f(N,N-n) for N >> n. - Mamuka Jibladze, Mar 07 2017

Examples

			The rational values as given by the e.g.f. in the formula section start: 1, 1/2, 7/6, 3/2, 59/30, 5/2, 127/42, 7/2, 119/30, ... - _Peter Luschny_, Aug 18 2018
		

Crossrefs

Programs

  • Maple
    Clausen := proc(n) local S,i;
    S := numtheory[divisors](n); S := map(i->i+1,S);
    S := select(isprime,S); mul(i,i=S) end proc:
    seq(Clausen(i),i=0..24);
    # Peter Luschny, Apr 29 2009
    A141056 := proc(n)
        if n = 0 then 1 else A027760(n) end if;
    end proc: # R. J. Mathar, Oct 28 2013
  • Mathematica
    a[n_] := Sum[ Boole[ PrimeQ[d+1]] / (d+1), {d, Divisors[n]}] // Denominator; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Aug 09 2012 *)
  • PARI
    A141056(n) =
    {
        p = 1;
        if (n > 0,
            fordiv(n, d,
                r = d + 1;
                if (isprime(r), p = p*r)
            )
        );
        return(p)
    }
    for(n=0,70,print1(A141056(n), ", ")); /* Peter Luschny, May 07 2012 */

Formula

a(n) are the denominators of the polynomials generated by cosh(x*z)*z/(1-exp(-z)) evaluated x=1. See A176328 for the numerators. - Peter Luschny, Aug 18 2018
a(n) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)*B(j)), where B are the Bernoulli numbers A164555/A027642. - Fabián Pereyra, Jan 06 2022

Extensions

Extended by R. J. Mathar, Nov 22 2009

A176591 Bernoulli denominators A141056(n), with the exception a(1)=1.

Original entry on oeis.org

1, 1, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2, 64722, 2, 30, 2, 4686, 2, 140100870, 2, 6, 2, 30, 2
Offset: 0

Views

Author

Paul Curtz, Apr 21 2010

Keywords

Comments

These are also the denominators of a sequence generated by inverse binomial transform of a modified Bernoulli sequence described in (with numerators in) A176328.

Crossrefs

Programs

  • Maple
    read("transforms") ; evb := [1, 0, seq(bernoulli(n), n=2..50)] ; BINOMIALi(evb) ; apply(denom, %) ; # R. J. Mathar, Dec 01 2010
    seq(denom((bernoulli(i,1)+bernoulli(i,2))/2),i=0..50); # Peter Luschny, Jun 17 2012
  • Mathematica
    a[n_] := If[OddQ[n], 2, BernoulliB[n] // Denominator]; a[1] = 1; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 29 2012 *)
    Join[{1,1},BernoulliB[Range[2,80]]/.(0->1/2)//Denominator] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    A176591(n) = { my(p=1); if(n>1, fordiv(n, d, my(r=d+1); if(isprime(r), p = p*r))); return(p); }; \\ Antti Karttunen, Dec 20 2018, after code in A141056

Formula

a(n) = A141056(n), n <> 1.
a(n) = A027760(n), n>1.
a(2n) = A002445(n), a(2n+1)= A040000(n).

Extensions

More terms from Antti Karttunen, Dec 20 2018

A195240 Numerators of the second differences of the sequence of fractions (-1)^(n+1)*A176618(n)/A172031(n).

Original entry on oeis.org

0, 1, 1, 7, 8, 11, 10, 7, 8, 19, 14, 337, 1028, 5, -2, -1681, 1936, 22133, -21734, -87223, 87388, 427291, -427222, -118181363, 118182728, 4276553, -4276550, -11874730297, 11874730732, 4307920641583
Offset: 0

Views

Author

Paul Curtz, Sep 13 2011

Keywords

Comments

The array of (-1)^n*A176328(n)/A176591(n) and its first, second, etc. differences in subsequence rows starts as follows:
0, 1, 2, 19/6, 14/3, 199/30, 137/15, ... (-1)^n * A176328(n)/A176591(n),
1, 1, 7/6, 3/2, 59/30, 5/2, 127/42, ... see A176328,
0, 1/6, 1/3, 7/15, 8/15, 11/21, 10/21, ...
1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, ... see A190339
0, -1/30, -1/15, -8/105, -4/105, 4/105, -116/1155, ...
The numerators in the 3rd row, 0, 1/6, 1/3, 7/15, 8/15, 11/21, 10/21, 7/15, 8/15, 19/33, 14/33, 337/1365, 1028/1365, 5/3, -2/3, -1681/255, 1936/255, ... define the current sequence.
The associated denominators are 1, 6 and followed by 3, 15, 15 etc as provided in A172087.
The second column of the array, 1, 1, 1/6, 1/6, -1/30, -1/30, ... contains doubled A000367(n)/A002445(n). These are related to A176150, A176144, and A176184.
In the first subdiagonal of the array we see 1, 1/6, 2/15, -8/150, 8/105, -32/321, 6112/15015, -3712/2145 , ... continued as given by A181130 and A181131.

Programs

  • Maple
    read("transforms") ;
    evb := [0, 1, 0, seq(bernoulli(n), n=2..30)] ;
    ievb := BINOMIALi(evb) ;
    [seq((-1)^n*op(n,ievb),n=1..nops(ievb))] ;
    DIFF(%) ;
    DIFF(%) ;
    apply(numer,%) ; # R. J. Mathar, Sep 20 2011
  • Mathematica
    evb = Join[{0, 1, 0}, Table[BernoulliB[n], {n, 2, 32}]]; ievb = Table[ Sum[Binomial[n, k]*evb[[k+1]], {k, 0, n}], {n, 0, Length[evb]-3}]; Differences[ievb, 2] // Numerator (* Jean-François Alcover, Sep 09 2013, after R. J. Mathar *)

Formula

a(2*n+1) + a(2*n+2) = A172087(2*n+2) = A172087(2*n+3), n >= 1.

A228767 Second bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).

Original entry on oeis.org

-2, -9, -45, -231, -1161, -5643, -26637, -122895, -557073, -2490387, -11010069, -48234519, -209715225, -905969691, -3892314141, -16642998303, -70866960417, -300647710755, -1271310319653, -5360119185447, -22539988369449, -94557999988779, -395824185999405
Offset: 1

Views

Author

Michel Marcus, following a suggestion of Paul Curtz, Sep 03 2013

Keywords

Comments

The sequence to be transformed is A176328/A176591, its inverse binomial transform begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, -5643, 33578309/2730, ...
Its first bisection is constituted of fractional numbers, with denominators A176591, whereas this bisection is constituted of integers only.
It appears that a(1) = -2 and a(n) = -1 * A005408(n-1) * A087289(n-2) for n>1.

Programs

  • PARI
    fr(n) = if (n==0, 1, (-1)^n*(subst(bernpol(n), x, 1) + subst(bernpol(n), x, 2))/2);
    ibtfr(n) = sum(k = 0, n, (-1)^(n-k)*binomial(n, k) * fr(k));
    lista(nn) = {forstep(n=1, nn, 2, print1(ibtfr(n), ", "););} \\ Michel Marcus, Sep 03 2013

Formula

Conjecture: G.f. -x*(2-11*x+21*x^2-2*x^3+8*x^4)/((1-x)^2*(1-4*x)^2). [Bruno Berselli, Sep 03 2013]
Conjecture: a(n) = (8+4^n)*(1-2*n)/8 for n>1, a(1)=-2. [Bruno Berselli, Sep 03 2013]

A176447 a(2n) = -n, a(2n+1) = 2n+1.

Original entry on oeis.org

0, 1, -1, 3, -2, 5, -3, 7, -4, 9, -5, 11, -6, 13, -7, 15, -8, 17, -9, 19, -10, 21, -11, 23, -12, 25, -13, 27, -14, 29, -15, 31, -16, 33, -17, 35, -18, 37, -19, 39, -20, 41, -21, 43, -22, 45, -23, 47, -24, 49, -25, 51, -26, 53, -27, 55, -28, 57, -29, 59, -30, 61, -31, 63, -32, 65, -33, 67, -34, 69, -35
Offset: 0

Views

Author

Paul Curtz, Apr 18 2010

Keywords

Comments

There is more complicated way of defining the sequence: consider the sequence of modified Bernoulli numbers EVB(n) = A176327(n)/A176289(n) and its inverse binomial transform IEVB(n) = A176328(n)/A176591(n). Then a(n) is the numerator of the difference EVB(n)-IEVB(n). The denominator of the difference is 1 if n=0, else A040001(n-1).
A particularity of EVB(n) is: its (forward) binomial transform is 1, 1, 7/6, 3/2, 59/30,.. = (-1)^n*IEVB(n).
Note that A026741 is related to the Rydberg-Ritz spectrum of the hydrogen atom.

Examples

			G.f. = x - x^2 + 3*x^3 - 2*x^4 + 5*x^5 - 3*x^6 + 7*x^7 - 4*x^8 + 9*x^9 - 5*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [n*(1-3*(-1)^n)/4: n in [0..60]]; // Vincenzo Librandi, Aug 04 2011
    
  • Mathematica
    a[n_?EvenQ]:=-(n/2); a[n_?OddQ]:=n; Table[a[n], {n, 100}] (* Alonso del Arte, Dec 01 2010 *)
    a[ n_] := n / If[ Mod[ n, 2] == 1, 1, -2]; (* Michael Somos, Jun 11 2013 *)
    CoefficientList[Series[x (1 - x + x^2)/((x - 1)^2*(1 + x)^2), {x, 0, 70}], x]  (* Michael De Vlieger, Dec 10 2016 *)
    LinearRecurrence[{0,2,0,-1},{0,1,-1,3},80] (* Harvey P. Dale, Nov 01 2017 *)
  • PARI
    {a(n) = n / if( n%2, 1, -2)}; /* Michael Somos, Jun 11 2013 */

Formula

From R. J. Mathar, Dec 01 2010: (Start)
a(n) = (-1)^n*A026741(n) = n*(1-3*(-1)^n)/4.
G.f.: x*(1-x+x^2) / ( (x-1)^2*(1+x)^2 ).
a(n) = +2*a(n-2) -a(n-4). (End)
a(n) = -a(-n) for all n in Z. - Michael Somos, Jun 11 2013
From Michael Somos, Aug 30 2014: (Start)
Euler transform of length 6 sequence [ -1, 3, 1, 0, 0, -1].
0 = - 1 - a(n) - a(n+1) + a(n+2) + a(n+3) for all n in Z.
0 = 1 + a(n)*(-2 -a(n) + a(n+2)) - 2*a(n+1) - a(n+2) for all n in Z. (End)
From Michael Somos, May 04 2015: (Start)
a(n) is multiplicative with a(2^e) = -(2^(e-1)) if e>0, a(p^e) = p^e otherwise.
G.f.: (f(x) - 3 * f(-x)) / 4 where f(x) := x / (1 - x)^2.
G.f.: x * (1 - x) * (1 - x^6) / ((1 - x^2)^3 * (1 - x^3)). (End)
From Amiram Eldar, Sep 21 2023: (Start)
Dirichlet g.f.: zeta(s-1) * (1 - 3/2^s).
Sum_{k=0..n} a(k) = A008795(n-1), for n > 0.
Sum_{k=0..n} a(k) ~ n^2/8. (End)

A228827 Numerators of the first bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).

Original entry on oeis.org

1, 25, 599, 4285, 15599, 169625, 33578309, 344155, 133697983, 941417335, 1729982389, 3184334285, 274574499509, 2625798955, 1611022490371, 123951819730625, 9814145542783, 3453861186955, -25128299959971711973, 2945661954537595, -260933954573210488051
Offset: 0

Views

Author

Paul Curtz & Michel Marcus, Sep 06 2013

Keywords

Comments

The sequence to be transformed is A176328/A176591, its inverse binomial transform begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, -5643, 33578309/2730, ...
It appears that a(n) - A000367(n) is a multiple of A002445(n), and the quotients are 0, 4, 20, 102, 520, 2570, 12300, ...

Crossrefs

Cf. A228767 (other bisection).

Programs

  • PARI
    fr(n) = {default(seriesprecision, n+1); egf = (x/2)*(exp(-x)+1)/(exp(x)-1);(n)!* polcoeff(egf, n);}
    ibtfr(n) = sum(k = 0, n, (-1)^(n-k)*binomial(n, k) * fr(k));
    lista(nn) = {forstep(n = 0, nn, 2, print1(numerator(ibtfr(n)), ", "););} \\ Michel Marcus, Sep 06 2013

A227978 a(0)=1, a(1)=2; for n>1, a(n) = n*(2^n+4)/4.

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 102, 231, 520, 1161, 2570, 5643, 12300, 26637, 57358, 122895, 262160, 557073, 1179666, 2490387, 5242900, 11010069, 23068694, 48234519, 100663320, 209715225, 436207642, 905969691, 1879048220, 3892314141, 8053063710, 16642998303
Offset: 0

Views

Author

Paul Curtz, Oct 07 2013

Keywords

Comments

The inverse binomial transform of A176328/A176591 (see Comments field in A228827) begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, ... Consider these values without sign and the fractions rounded to the nearest integer, the sequence lists the resulting numbers.
Differences table of a(n):
1, 2, 4, 9, 20, 45, 102, 231, 520, 1161, ...
1, 2, 5, 11, 25, 57, 129, 289, 641, 1409, ... After 2: 2^m*(m+4)+1.
1, 3, 6, 14, 32, 72, 160, 352, 768, 1664, ... A078836 (after 3).
2, 3, 8, 18, 40, 88, 192, 416, 896, 1920, ... A129955.
1, 5, 10, 22, 48, 104, 224, 480, 1024, 2176, ... A079861 (after 5).
4, 5, 12, 26, 56, 120, 256, 544, 1152, 2432, ... After 5: 2^m*(m+12).
1, 7, 14, 30, 64, 136, 288, 608, 1280, 2688, ... After 7: 2^m*(m+14).
6, 7, 16, 34, 72, 152, 320, 672, 1408, 2944, ..., etc.
(n-1)*a(n)-n*a(n-1) = A001788(n-1) for n>1. [Bruno Berselli, Oct 11 2013]

Crossrefs

Programs

  • Magma
    [1,2] cat [n*(2^n+4)/4: n in [2..40]]; // Bruno Berselli, Oct 11 2013
    
  • Mathematica
    Join[{1, 2}, Table[n (2^n + 4)/4, {n, 2, 40}]] (* Bruno Berselli, Oct 11 2013 *)
  • PARI
    a(n) = if (n == 0, 1, if (n == 1, 2, n*(2^n+4)/4)); \\ Michel Marcus, Oct 11 2013

Formula

a(2n+2) = A229135(n+1); a(2n-1) = -A228767(n) for n>0.
a(n) = 6*a(n-1) -13*a(n-2) +12*a(n-3) -4*a(n-4) for n>5.
G.f.: (1-4*x+5*x^2-x^3-2*x^4+2*x^5)/((1-x)^2*(1-2*x)^2). - Colin Barker, Oct 09 2013

Extensions

More terms from Colin Barker, Oct 09 2013

A228838 a(n) = n * A002445(n).

Original entry on oeis.org

0, 6, 60, 126, 120, 330, 16380, 42, 4080, 7182, 3300, 1518, 32760, 78, 12180, 214830, 8160, 102, 34545420, 114, 270600, 37926, 15180, 6486, 1113840, 1650, 41340, 21546, 24360, 10266, 1703601900, 186, 16320, 2135826, 1020, 164010, 5043631320, 222, 1140
Offset: 0

Views

Author

Paul Curtz, Sep 05 2013

Keywords

Comments

a(n+1) is a multiple of A040031(n+1), sequence of period 2: 6, 12.
a(n) is divisible by A040879(n)=30 followed by the sequence of period 2: 6, 60. See A040214 and A165734.
Note that A164877(n) + A000367(n) = A164558(2n).

Examples

			a(0)=0*1, a(1)=1*6, a(2)=2*30=60,, a(3)=3*42=126.
		

Programs

  • PARI
    a(n)=n*denominator(bernfrac(2*n))

Formula

a(n) = A176328(2n) - A000367(n).
a(n) = A164877(n)/2.
a(n+1) = A111008(n) * A036283(n+1).
2*a(n) = A164558(2n) - A000367(n).
a(n) = A164558(2n) - A176328(2n).

Extensions

Typo in data fixed by Colin Barker, Jul 03 2015

A257106 Denominators of the inverse binomial transform of the Bernoulli numbers with B(1)=2/3.

Original entry on oeis.org

1, 3, 6, 2, 10, 6, 42, 6, 30, 2, 22, 6, 2730, 6, 6, 2, 170, 6, 798, 6, 330, 2, 46, 6, 2730, 6, 6, 2, 290, 6, 14322, 6, 510, 2, 2, 6, 1919190, 6, 6, 2, 4510, 6, 1806, 6, 690, 2, 94, 6, 46410, 6, 66, 2, 530, 6, 798, 6, 870, 2, 118, 6, 56786730, 6, 6, 2, 170, 6
Offset: 0

Views

Author

Paul Curtz, Apr 23 2015

Keywords

Comments

Difference table of Bernoulli numbers with B(1)=2/3:
1, 2/3, 1/6, 0, -1/30, 0, 1/42, 0, ...
-1/3, -1/2, -1/6, -1/30, 1/30, 1/42, -1/42, ...
-1/6, 1/3, 2/15, 1/15, -1/105, -1/21, ...
1/2, -1/5, -1/15, -8/105, -4/105, ...
-7/10, 2/15, -1/105, 4/105, ...
5/6, -1/7, 1/21, ...
-41/42, 2/15, ...
7/6, ...
...
First column: 1, -1/3, -1/6, 1/2, -7/10, 5/6, -41/42, 7/6, -41/30, 3/2, -35/22, 11/6, ... . a(n) is the n-th term of the denominators.
Antidiagonal sums: 1, 1/3, -1/2, 2/3, -5/6, 1, -7/6, 4/3, -3/2, 5/3, -11/6, 2, ... . See A060789(n).
a(2n+2)/a(2n+1) = 2, 5, 7, 5, 11, 455, ... .
By definition, for B(1) = b, the inverse binomial transform is
Bi(b) = 1, -1 + b, 7/6 - 2*b, -3/2 + 3*b, 59/30 + 4*b, ...
= A176328(n)/A176591(n) - (-1)^n *n*b.
With Bic(b) = 0, -1/2 + b, 1 - 2*b, -3/2 + 3*b, 2 + 4*b, ...
= (-1)^n *(A001477(n)/2 - n*b),
Bi(b) = (-1)^n *(A164555(n)/A027642(n) + A001477(n)/2 - n*b) =
= A027641(n)/A027642(n) + Bic(b) .

Examples

			a(0) = 1-0, a(1) = -1/2 +1/6 = -1/3, a(2) = 1/6 -1/3 = -1/6, a(3) = 0 +1/2.
		

Crossrefs

Programs

  • Mathematica
    max = 66; B[1] = 2/3; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Denominator; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 11 2015 *)
  • Sage
    def A257106_list(len, B1) :
        T = matrix(QQ, 2*len+1)
        for m in (0..2*len) :
            T[0, m] = bernoulli_polynomial(1, m) if m <> 1 else B1
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return [denominator(T[k, 0]) for k in (0..len-1)]
    A257106_list(66, 2/3) # Peter Luschny, May 09 2015

Formula

Conjecture: a(2n+1) = 3 followed by period 3: repeat 2, 6, 6.
Conjecture: a(2n) = A002445(n)/(period 3: repeat 1, 1, 3).
a(n) = A027641(n)/A027642(n) - (-1)^n *n/6.

A257935 Numerators of the inverse binomial transform of the Bernoulli numbers with B(1)=1.

Original entry on oeis.org

1, 0, -5, 3, -61, 5, -125, 7, -121, 9, -325, 11, -17071, 13, -35, 15, -7697, 17, 36685, 19, -177911, 21, 852995, 23, -236396851, 25, 8553025, 27, -23749473209, 29, 8615841061175, 31, -7709321049377, 33, 2577687858265, 35, -26315271553088022793, 37
Offset: 0

Views

Author

Paul Curtz, May 13 2015

Keywords

Comments

Difference table of 1, 1, 1/6, 0, -1/30, ... :
1, 1, 1/6, 0, -1/30, 0, 1/42, 0, ...
0, -5/6, -1/6, -1/30, 1/30, 1/42, -1/42, ...
-5/6, 2/3, 2/15, 1/15, -1/105, -1/21, ...
3/2, -8/15, -1/15, -8/105, -4/105, ...
-61/30, 7/15, -1/105, 4/105, ...
5/2, -10/21, 1/21, ...
-125/42, 11/21, ...
7/2, ...
etc.
The inverse binomial transform is the first column. a(n) is the n-th term of the numerators. See A027641(n+1).
Denominators: A176591.
Is a(4n+2) a multiple of 5? This is true, at least up to 4n+2 = 998. - Jean-François Alcover, Jul 02 2015

Examples

			By the first formula: numerators of 1-0=1, -1/2+1/2=0, 1/6-1=-5/6, 0+3/2=3/2,....
		

Crossrefs

Programs

  • Mathematica
    max = 40; B[1] = 1; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Numerator; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 20 2015 *)
  • PARI
    firstdiff(s) = my(t=vector(#s-1)); for(i=2, #s, t[i-1]=s[i]-s[i-1]); t
    a257935(k) = {
      my(s=[], b = concat([1,1], vector(k, n, n++; bernfrac(n))));
      until(#b<2,
        s = concat(s, numerator(b[1]));
        b = firstdiff(b)
      );
      s
    }
    a257935(50) \\ Colin Barker, May 13 2015

Formula

a(n) = numerators of A027641(n)/A027642(n) - (-1)^n*n/2.
a(n) = (A176328(n) - (-1)^n*n)*A176591(n).
a(n) = 2*A027641(n)*A176591(n)/A027642(n) - A176328(n).

Extensions

More terms from Colin Barker, May 13 2015
Showing 1-10 of 11 results. Next