cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A109007 a(n) = gcd(n,3).

Original entry on oeis.org

3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1
Offset: 0

Views

Author

Keywords

Comments

For n>1: a(n) = GCD of the n-th and (n+2)-th triangular numbers = A050873(A000217(n+2), A000217(n)). - Reinhard Zumkeller, May 28 2007
From Klaus Brockhaus, May 24 2010: (Start)
Continued fraction expansion of (3+sqrt(17))/2.
Decimal expansion of 311/999. (End)

Crossrefs

Cf. A178255 (decimal expansion of (3+sqrt(17))/2). - Klaus Brockhaus, May 24 2010

Programs

Formula

a(n) = 1 + 2*[3|n] = 1 + 2(1 + 2*cos(2*n*Pi/3))/3, where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-3) for n>2.
Multiplicative with a(p^e, 3) = gcd(p^e, 3). - David W. Wilson, Jun 12 2005
O.g.f.: -(3+x+x^2)/((x-1)*(x^2+x+1)). - R. J. Mathar, Nov 24 2007
Dirichlet g.f. zeta(s)*(1+2/3^s). - R. J. Mathar, Apr 08 2011
a(n) = 2*floor(((n-1) mod 3)/2) + 1. - Gary Detlefs, Dec 28 2011
a(n) = 3^(1 - sgn(n mod 3)). - Wesley Ivan Hurt, Jul 24 2016
a(n) = 3/(1 + 2*((n^2) mod 3)). - Timothy Hopper, Feb 25 2017
a(n) = (5 + 4*cos(2*n*Pi/3))/3. - Wesley Ivan Hurt, Oct 04 2018

A222132 Decimal expansion of sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))).

Original entry on oeis.org

2, 5, 6, 1, 5, 5, 2, 8, 1, 2, 8, 0, 8, 8, 3, 0, 2, 7, 4, 9, 1, 0, 7, 0, 4, 9, 2, 7, 9, 8, 7, 0, 3, 8, 5, 1, 2, 5, 7, 3, 5, 9, 9, 6, 1, 2, 6, 8, 6, 8, 1, 0, 2, 1, 7, 1, 9, 9, 3, 1, 6, 7, 8, 6, 5, 4, 7, 4, 7, 7, 1, 7, 3, 1, 6, 8, 8, 1, 0, 7, 9, 6, 7, 9, 3, 9, 3, 1, 8, 2, 5, 4, 0, 5, 3, 4, 2, 1, 4, 8, 3, 4, 2, 2, 7
Offset: 1

Views

Author

Jaroslav Krizek, Feb 08 2013

Keywords

Comments

Sequence with a(1) = 1 is decimal expansion of sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))) = A222133.
Because 17 == 1 (mod 4), the basis for integers in the real quadratic number field K(sqrt(17)) is <1, omega(17)>, where omega(17) = (1 + sqrt(17))/2. - Wolfdieter Lang, Feb 10 2020
This is the positive root of the polynomial x^2 - x - 4, with negative root -A222133. - Wolfdieter Lang, Dec 10 2022
It is the spectral radius of the diamond graph (see Seeger and Sossa, 2023). - Stefano Spezia, Sep 19 2023
c^n = A006131(n) + A006131(n-1) * d, where c = (1 + sqrt(17))/2 and d = (-1 + sqrt(17))/2. - Gary W. Adamson, Nov 25 2023
c^n = A052923(n) + A006131(n-1) * c. Also for negative n. - Wolfdieter Lang, Nov 27 2023
The effective degree of maximal entropy random walk on the barred-square graph (see Burda et al.). - Stefano Spezia, Feb 07 2025

Examples

			2.561552812808830274910704...
		

Crossrefs

Programs

  • Maple
    Digits:=140:
    evalf((sqrt(17)+1)/2);  # Alois P. Heinz, Sep 19 2023
  • Mathematica
    RealDigits[(1 + Sqrt[17])/2, 10, 130]

Formula

Closed form: (sqrt(17) + 1)/2 = A178255 - 1 = A082486 - 2.
sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))) - 1 = sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))). See A222133.

A085984 Decimal expansion of solution to e^x*(-1 + x) = (1 + x)/e^x.

Original entry on oeis.org

1, 1, 9, 9, 6, 7, 8, 6, 4, 0, 2, 5, 7, 7, 3, 3, 8, 3, 3, 9, 1, 6, 3, 6, 9, 8, 4, 8, 6, 4, 1, 1, 4, 1, 9, 4, 4, 2, 6, 1, 4, 5, 8, 7, 8, 8, 4, 1, 8, 6, 0, 7, 2, 0, 8, 9, 1, 5, 4, 7, 7, 7, 8, 3, 9, 1, 8, 1, 2, 4, 7, 2, 5, 2, 2, 3, 8, 4, 7, 4, 7, 9, 9, 9, 9, 0, 8, 6, 9, 9, 2, 1, 4, 6, 5, 0, 9, 3, 7, 9, 8, 8
Offset: 1

Views

Author

Eric W. Weisstein, Jul 06 2003

Keywords

Comments

This constant can also be defined as the root of coth x = x, as this equation and the above are equivalent. - Carl R. White, Dec 09 2003. Also the root of x*tanh x = 1. - N. J. A. Sloane, May 07 2020
This constant is also the point on the parametric tractrix (t - tanh(t), sech(t)) the least distant from the origin. - Michael Clausen, Feb 18 2013
This constant also equals sqrt(lambda^2+1), where lambda is the Laplace limit constant A033259. - Jean-François Alcover, Sep 08 2014, after Steven Finch.
For each of the real symmetric n X n matrices M defined by M(i,j) = max(i,j) with n >= 2, there exist n-1 negative eigenvalues < -1/4 and only one positive eigenvalue lambda(n) such that n^2/2 < lambda(n) < n^2. Indeed, when n tends to infinity, lambda(n) ~ n^2/(this constant)^2 (see reference O. Carton et al.). For n = 2, the positive eigenvalue is (3+sqrt(17))/2 [A178255]. - Bernard Schott, Mar 13 2020

Examples

			1.1996786402577338339163698486411419442614587884186072...
		

References

  • O. Carton, L. Rosaz, M. Zeitoun, Problèmes corrigés de Mathématiques posés au Concours de Mines/Ponts, Tome 5, Ellipses, 1992; Problème Mines-Ponts 1991 - Options M, P', TA - Epreuve pratique p. 125.
  • Steven R. Finch, Mathematical constants, Volume 94, Encyclopedia of mathematics and its applications, Cambridge University Press, 2003, p. 268.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 30, equation 30:10:9 at page 283.

Crossrefs

Cf. A003957 (x = cos(x)), A009379, A033259, A069855, A209289.

Programs

  • Mathematica
    RealDigits[ x /. FindRoot[ Coth[x] == x, {x, 1}, WorkingPrecision -> 102]] // First (* Jean-François Alcover, Feb 08 2013 *)
    1+2 NSum[LaguerreL[n-1,1,4 n]/n Exp[-2 n],{n,1,Infinity}] //
      (* Aaron Hendrickson, Mar 17 2021 *)
  • PARI
    solve(u=1,2,tanh(u)-1/u)  /* type e.g. \p99 to get 99 digits; M. F. Hasler, Feb 01 2011 */

Formula

Equals 1 + 2*Sum_{n>=1} (Laguerre(n-1,1,4n)/n)*e^(-2n) (see Mathematics Stack Exchange in Links). - Aaron Hendrickson, Mar 17 2022

A190264 Decimal expansion of (sqrt(89) - 6)/2.

Original entry on oeis.org

1, 7, 1, 6, 9, 9, 0, 5, 6, 6, 0, 2, 8, 3, 0, 1, 9, 0, 5, 6, 6, 0, 3, 3, 0, 1, 8, 8, 8, 1, 1, 3, 2, 0, 3, 5, 8, 4, 9, 1, 8, 1, 1, 3, 1, 6, 7, 0, 7, 5, 6, 0, 6, 6, 0, 3, 3, 1, 4, 9, 0, 7, 2, 4, 4, 9, 0, 0, 1, 1, 4, 5, 4, 7, 9, 2, 5, 5, 9, 0, 2, 9, 2, 7, 0, 5, 1, 3, 4, 9, 3, 4, 4, 5, 1, 9, 2, 0, 5, 2, 2, 6, 7, 5, 0, 6, 4, 8, 7, 1, 4, 0, 8, 7, 4, 9, 3, 7, 4, 9
Offset: 1

Views

Author

Clark Kimberling, May 07 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is (-6 + sqrt(89))/2 can be partitioned into rectangles of shapes 3/2 and 3 in a manner that matches the periodic continued fraction [3/2, 3, 3/2, 3, ...]. R can also be partitioned into squares so as to match the periodic continued fraction [1, 1, 2, 1, 1, 6, 1, 36, 1, 6, 1, 1, 2, 1, 8, 1, 2, 1, 1, 6, 1, 36, ...]. For details, see A188635.
Quadratic number with denominator 2 and minimal polynomial 4x^2 + 24x - 53. - Charles R Greathouse IV, Apr 21 2016

Examples

			1.716990566028301905660330188811320358491...
		

Crossrefs

Programs

  • Mathematica
    FromContinuedFraction[{3/2, 3, {3/2, 3}}]
    ContinuedFraction[%, 100]  (* [1, 1, 2, 1, 1, 6, 1, 36, ... *)
    RealDigits[N[%%, 120]]     (* A190264 *)
    N[%%%, 40]
  • PARI
    sqrt(89)/2-3 \\ Charles R Greathouse IV, Apr 21 2016

A222133 Decimal expansion of sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))).

Original entry on oeis.org

1, 5, 6, 1, 5, 5, 2, 8, 1, 2, 8, 0, 8, 8, 3, 0, 2, 7, 4, 9, 1, 0, 7, 0, 4, 9, 2, 7, 9, 8, 7, 0, 3, 8, 5, 1, 2, 5, 7, 3, 5, 9, 9, 6, 1, 2, 6, 8, 6, 8, 1, 0, 2, 1, 7, 1, 9, 9, 3, 1, 6, 7, 8, 6, 5, 4, 7, 4, 7, 7, 1, 7, 3, 1, 6, 8, 8, 1, 0, 7, 9, 6, 7, 9, 3, 9, 3, 1, 8, 2, 5, 4, 0, 5, 3, 4, 2, 1, 4, 8, 3, 4, 2, 2, 7
Offset: 1

Views

Author

Jaroslav Krizek, Feb 08 2013

Keywords

Comments

Sequence with a(1) = 2 is the decimal expansion of sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))) = - A222132.
This is the positive root of the minimal polynomial x^2 + x - 4, with negative root -A222132. - Wolfdieter Lang, Dec 10 2022

Examples

			1.561552812808830274910704...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[17] - 1)/2, 10, 130]

Formula

Closed form: (sqrt(17) - 1)/2 = A178255-2 = A082486-3 = A222132-1.
sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))) + 1 = sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))). See A222132.
Showing 1-5 of 5 results.