A019434 Fermat primes: primes of the form 2^(2^k) + 1, for some k >= 0.
3, 5, 17, 257, 65537
Offset: 1
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 137-141, 197.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see Table 1, p. 458.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, pp. 78-79.
- Richard K. Guy, Unsolved Problems in Number Theory, A3.
- Hardy and Wright, An Introduction to the Theory of Numbers, bottom of page 18 in the sixth edition, gives an heuristic argument that this sequence is finite.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 7, 70.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.
Links
- Anas AbuDaqa, Amjad Abu-Hassan, and Muhammad Imam, Taxonomy and Practical Evaluation of Primality Testing Algorithms, arXiv:2006.08444 [cs.CR], 2020.
- Cyril Banderier, Pepin's Criterion For Fermat Numbers (in French)
- Kent D. Boklan and John H. Conway, Expect at most one billionth of a new Fermat Prime!, arXiv:1605.01371 [math.NT], 2016.
- P. Bruillard, S.-H. Ng, E. Rowell, and Z. Wang, On modular categories, arXiv:1310.7050 [math.QA], 2013-2015.
- C. K. Caldwell, The Prime Glossary, Fermat number
- Miles Englezou, Proof that 5 Fermat primes implies 31 odd order groups with 2-group automorphism groups
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Wilfrid Keller, Prime factors k.2^n + 1 of Fermat numbers F_m
- P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
- Romeo Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012
- Romeo Meštrović, Goldbach-type conjectures arising from some arithmetic progressions, University of Montenegro, 2018.
- Romeo Meštrović, Goldbach's like conjectures arising from arithmetic progressions whose first two terms are primes, arXiv:1901.07882 [math.NT], 2019.
- Salah Eddine Rihane, Chèfiath Awero Adegbindin, and Alain Togbé, Fermat Padovan And Perrin Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.2.
- Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Sapienza University of Rome (Italy 2025). See p. 65.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38. Local copy, included here with permission from the editors of Quadrature.
- Yaryna Stelmakh, Homeomorphisms of the space of non-zero integers with the Kirch topology, arXiv:2101.04676 [math.GN], 2020.
- Eric Weisstein's World of Mathematics, Fermat Number
- Eric Weisstein's World of Mathematics, Fermat Prime
- Eric Weisstein's World of Mathematics, Pepin's Test
- Wikipedia, Fermat number
- Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016.
Crossrefs
Programs
-
Magma
[2^(2^n)+1 : n in [0..4] | IsPrime(2^(2^n)+1)]; // Arkadiusz Wesolowski, Jun 09 2011
-
Mathematica
Select[Table[2^(2^n) + 1, {n, 0, 4}], PrimeQ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
-
PARI
for(i=0,10, isprime(2^2^i+1) && print1(2^2^i+1,", ")) \\ M. F. Hasler, Nov 21 2009
-
Sage
[2^(2^n)+1 for n in (0..4) if is_prime(2^(2^n)+1)] # G. C. Greubel, Mar 07 2019
Formula
a(n) = 1 + A001146(n-1), if 1 <= n <= 5. - Omar E. Pol, Jun 08 2018
Comments