A008804
Expansion of 1/((1-x)^2*(1-x^2)*(1-x^4)).
Original entry on oeis.org
1, 2, 4, 6, 10, 14, 20, 26, 35, 44, 56, 68, 84, 100, 120, 140, 165, 190, 220, 250, 286, 322, 364, 406, 455, 504, 560, 616, 680, 744, 816, 888, 969, 1050, 1140, 1230, 1330, 1430, 1540, 1650, 1771, 1892, 2024, 2156, 2300, 2444, 2600, 2756, 2925, 3094, 3276, 3458
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + 14*x^5 + 20*x^6 + 26*x^7 + 35*x^8 + ...
There are 10 asymmetric nonnegative integer 2 X 2 matrices with sum of elements equal to 7 under action of D_4:
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [0 1] [0 2] [0 2] [1 1]
[1 6] [2 5] [3 4] [2 4] [3 3] [4 2] [5 1] [3 2] [4 1] [2 3]
- T. D. Noe, Table of n, a(n) for n = 0..1000
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets with no reflection symmetry, 2019.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 197
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. [From _R. J. Mathar_, Nov 08 2008]
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,2,-2,0,2,-1).
Column k=3 of
A181322. Column k = 4 of
A180472 (but with different offset).
-
a:=[1,2,4,6,10,14,20,26];; for n in [9..60] do a[n]:=2*a[n-1] -2*a[n-3]+2*a[n-4]-2*a[n-5]+2*a[n-7]-a[n-8]; od; a; # G. C. Greubel, Sep 12 2019
-
R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)^2*(1-x^2)*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
-
seq(coeff(series(1/((1-x)^2*(1-x^2)*(1-x^4)), x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 12 2019
-
LinearRecurrence[{2,0,-2,2,-2,0,2,-1}, {1,2,4,6,10,14,20,26}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
gf[x_,k_]:=x^k/2 (1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])-(1+x)/(1-x^2)^Floor[k/2+1]); CoefficientList[Series[gf[x,4]/x^7,{x,0,60}],x] (* Herbert Kociemba, Nov 27 2016 *)
Table[(84 +12*(-1)^n +85*n +3*(-1)^n*n +24*n^2 +2*n^3 +12*Sin[n Pi/2])/96, {n,0,60}] (* Eric W. Weisstein, Oct 12 2017 *)
CoefficientList[Series[1/((1-x)^4*(1+x)^2*(1+x^2)), {x,0,60}], x] (* Eric W. Weisstein, Oct 12 2017 *)
-
a(n)=(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2 +2*n^3)/96 \\ Jaume Oliver Lafont, Sep 20 2009
-
{a(n) = my(s = 1); if( n<-7, n = -8 - n; s = -1); if( n<0, 0, s * polcoeff( 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^4)) + x * O(x^n), n))}; /* Michael Somos, Feb 02 2011 */
-
def A008804_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)^2*(1-x^2)*(1-x^4))).list()
A008804_list(60) # G. C. Greubel, Sep 12 2019
A032246
"DHK[ 5 ]" (bracelet, identity, unlabeled, 5 parts) transform of 1,1,1,1,...
Original entry on oeis.org
2, 4, 10, 16, 28, 42, 64, 90, 126, 168, 224, 288, 370, 462, 576, 704, 858, 1030, 1232, 1456, 1716, 2002, 2330, 2688, 3094, 3536, 4032, 4570, 5168, 5814, 6528, 7296, 8140, 9044, 10032, 11088, 12236, 13460, 14784, 16192, 17710, 19320, 21050, 22880, 24840, 26910
Offset: 8
G.f. = 2*x^8 + 4*x^9 + 10*x^10 + 16*x^11 + 28*x^12 + 42*x^13 + 64*x^14 + ...
- G. C. Greubel, Table of n, a(n) for n = 8..1007
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,3,-3,-1,4,-1,-2,1).
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)) )); // G. C. Greubel, Feb 25 2019
-
gf[x_,k_]:=x^k/2 (1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])-(1+x)/(1-x^2)^Floor[k/2+1]); CoefficientList[Series[gf[x,5],{x,0,50}],x] (* Herbert Kociemba, Nov 27 2016 *)
Drop[CoefficientList[Series[2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)), {x,0,50}], x], 8] (* G. C. Greubel, Feb 25 2019 *)
-
{a(n) = if( n<0, n=5-n); polcoeff( 2 * x^8 / ((1-x)^2*(1-x^2)^2*(1-x^5)) + x * O(x^n), n)}; /* Michael Somos, Nov 28 2016 */
-
Vec(2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5)) + O(x^40)) \\ Colin Barker, Mar 13 2019
-
a=(2*x^8/((1-x)^2*(1-x^2)^2*(1-x^5))).series(x, 50).coefficients(x, sparse=False); a[8:] # G. C. Greubel, Feb 25 2019
A032248
"DHK[ 7 ]" (bracelet, identity, unlabeled, 7 parts) transform of 1,1,1,1,...
Original entry on oeis.org
4, 10, 28, 56, 113, 197, 340, 544, 856, 1284, 1896, 2709, 3816, 5247, 7128, 9504, 12540, 16302, 21001, 26728, 33748, 42185, 52364, 64448, 78832, 95725, 115600, 138720, 165648, 196707, 232560, 273600, 320601, 374034, 434796, 503448, 581020, 668173, 766084
Offset: 10
- Colin Barker, Table of n, a(n) for n = 10..1000
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets with no reflection symmetry, 2019.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,1,0,-1,8,-6,-6,8,0,-3,1).
-
LinearRecurrence[{3,0,-8,6,6,-8,1,0,-1,8,-6,-6,8,0,-3,1},{4,10,28,56,113,197,340,544,856,1284,1896,2709,3816,5247,7128,9504},40] (* Harvey P. Dale, Jul 08 2024 *)
-
Vec(x^10*(4 - 2*x - 2*x^2 + 4*x^3 + x^4 - 2*x^5 + x^6) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^40)) \\ Colin Barker, Feb 25 2019
A308401
Number of bracelets (turnover necklaces) of length n that have no reflection symmetry and consist of 6 white beads and n-6 black beads.
Original entry on oeis.org
3, 6, 16, 30, 56, 91, 150, 224, 336, 477, 672, 912, 1233, 1617, 2112, 2700, 3432, 4290, 5340, 6552, 8008, 9678, 11648, 13888, 16503, 19448, 22848, 26658, 31008, 35853, 41346, 47424, 54264, 61803, 70224, 79464, 89733, 100947, 113344, 126840, 141680, 157780, 175416, 194480, 215280, 237708
Offset: 9
Using Frank Ruskey's website (listed above) to generate bracelets of fixed content (6, 3) with string length n = 9 and alphabet size 2, we get the following A005513(n = 9) = 7 bracelets: (1) WWWWWWBBB, (2) WWWWWBWBB, (3) WWWWBWWBB, (4) WWWWBWBWB, (5) WWWBWWWBB, (6) WWWBWWBWB, and (7) WWBWWBWWB. From these, bracelets 1, 4, 5, and 7 have reflection symmetry, while bracelets 2, 3 and 6 have no reflection symmetry (and thus, a(9) = 3).
Starting with a black bead, we count that bead and how many white beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence to get the following dihedral compositions of n = 9 into 3 parts: (1) 1 + 7 + 1, (2) 1 + 2 + 6, (3) 1 + 3 + 5, (4) 2 + 5 + 2, (5) 4 + 1 + 4, (6) 2 + 3 + 4, and (7) 3 + 3 + 3. Again, dihedral compositions 1, 4, 5, and 7 are symmetric (have reflection symmetry), while dihedral compositions 2, 3, and 6 are not symmetric (and thus, a(9) = 3).
We may also start with a white bead and count that bead and how many black beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence again to get the following (conjugate) dihedral compositions of n = 9 into 6 parts: (1) 1 + 1 + 1 + 1 + 1 + 4, (2) 1 + 1 + 1 + 1 + 2 + 3, (3) 1 + 1 + 1 + 2 + 1 + 3, (4) 1 + 1 + 1 + 2 + 2 + 2, (5) 1 + 1 + 2 + 1 + 1 + 3, (6) 1 + 1 + 2 + 1 + 2 + 2, and (7) 1 + 2 + 1 + 2 + 1 + 2. Again, dihedral compositions 1, 4, 5, and 7 have reflection symmetries, while dihedral compositions 2, 3, and 6 do not have reflection symmetries (and thus, a(9) = 3). For example, dihedral composition 1 is symmetric because we can draw an axis of symmetry through one of the 1s and 4. In addition, dihedral composition 5 is symmetric because we may draw an axis of symmetry through the numbers 2 and 3.
- Colin Barker, Table of n, a(n) for n = 9..1000
- Hansraj Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10 (1979), no. 8, 964-999.
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets with no reflection symmetry, 2019.
- Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
- Richard H. Reis, A formula for C(T) in Gupta's paper, Indian J. Pure and Appl. Math., 10 (1979), no. 8, 1000-1001.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Vladimir S. Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
- Vladimir S. Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
- Duncan M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-3,-1,1,4,-3,-3,4,1,-1,-3,1,2,-1).
-
a(n) = (1/12)* (sumdiv(gcd(n, 6), d, eulerphi(d)*binomial((n/d) - 1, (6/d) - 1))) - (1/2)*binomial(floor(n/2), 3); \\ Michel Marcus, May 28 2019
-
Vec(x^9*(3 + x^2 + x^3 + x^4) / ((1 - x)^6*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)^2) + O(x^50)) \\ Colin Barker, Jun 02 2019
A308583
Triangle read by rows: T(n,k) = number of aperiodic chiral bracelets (turnover necklaces with no reflection symmetry and period n) with n beads, k of which are white and n - k are black, for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 4, 3, 0, 0, 0, 0, 0, 4, 6, 10, 6, 4, 0, 0, 0, 0, 0, 5, 10, 16, 16, 10, 5, 0, 0, 0, 0, 0, 7, 14, 28, 29, 28, 14, 7, 0, 0, 0, 0, 0, 8, 20, 42, 56, 56, 42, 20, 8, 0, 0, 0, 0, 0, 10, 26, 64, 90, 113, 90, 64, 26, 10, 0, 0, 0, 0, 0, 12, 35, 90, 150, 197, 197, 150, 90, 35, 12, 0, 0, 0, 0, 0, 14, 44, 126, 222, 340, 368, 340, 222, 126, 44, 14, 0, 0, 0
Offset: 1
The triangle begins (with rows for n >= 1 and columns for k >= 1) as follows:
0;
0, 0;
0, 0, 0;
0, 0, 0, 0;
0, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
0, 0, 2, 2, 2, 0, 0, 0;
0, 0, 3, 4, 4, 3, 0, 0, 0;
0, 0, 4, 6, 10, 6, 4, 0, 0, 0;
0, 0, 5, 10, 16, 16, 10, 5, 0, 0, 0;
0, 0, 7, 14, 28, 29, 28, 14, 7, 0, 0, 0;
0, 0, 8, 20, 42, 56, 56, 42, 20, 8, 0, 0, 0;
0, 0, 10, 26, 64, 90, 113, 90, 64, 26, 10, 0, 0, 0;
...
Notice, for example, that T(14, 6) = 90 <> 91 = A180472(14, 6). Out of the 91 chiral bracelets with 6 W and 8 B beads, only WWBWBBBWWBWBBB is periodic.
Using Frank Ruskey's website (listed above) to generate bracelets of fixed content (6, 3) with string length n = 9 and alphabet size 2, we get the following A005513(n = 9) = 7 bracelets: (1) WWWWWWBBB, (2) WWWWWBWBB, (3) WWWWBWWBB, (4) WWWWBWBWB, (5) WWWBWWWBB, (6) WWWBWWBWB, and (7) WWBWWBWWB. From these, bracelets 1, 4, 5, and 7 have reflection symmetry, while bracelets 2, 3 and 6 have no reflection symmetry. Because chiral bracelets 2, 3, and 6 are aperiodic as well, we have T(9, 3) = 3 = T(9, 6).
Starting with a black bead, we count that bead and how many white beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence to get the following dihedral compositions of n = 9 into 3 parts: (1) 1 + 7 + 1, (2) 1 + 2 + 6, (3) 1 + 3 + 5, (4) 2 + 5 + 2, (5) 4 + 1 + 4, (6) 2 + 3 + 4, and (7) 3 + 3 + 3. Again, dihedral compositions 1, 4, 5, and 7 are symmetric (have reflection symmetry), while dihedral compositions 2, 3, and 6 are not symmetric. In addition, chiral dihedral compositions 2, 3, and 6 are aperiodic as well, and so (again) T(9, 3) = 3.
We may also start with a white bead and count that bead and how many black beads follow (in one direction), and continue this process until we count all beads around the circle. We thus use MacMahon's correspondence again to get the following (conjugate) dihedral compositions of n = 9 into 6 parts: (1) 1 + 1 + 1 + 1 + 1 + 4, (2) 1 + 1 + 1 + 1 + 2 + 3, (3) 1 + 1 + 1 + 2 + 1 + 3, (4) 1 + 1 + 1 + 2 + 2 + 2, (5) 1 + 1 + 2 + 1 + 1 + 3, (6) 1 + 1 + 2 + 1 + 2 + 2, and (7) 1 + 2 + 1 + 2 + 1 + 2. Again, dihedral compositions 1, 4, 5, and 7 have reflection symmetries, while dihedral compositions 2, 3, and 6 do not have reflection symmetries. Chiral dihedral compositions 2, 3, and 6 are aperiodic as well, and hence T(9, 6) = 3.
Showing 1-5 of 5 results.
Comments