cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A223894 Triangular array read by rows: T(n,k) is the number of connected components with size k summed over all simple labeled graphs on n nodes; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 1, 6, 3, 4, 32, 12, 16, 38, 320, 80, 80, 190, 728, 6144, 960, 640, 1140, 4368, 26704, 229376, 21504, 8960, 10640, 30576, 186928, 1866256, 16777216, 917504, 229376, 170240, 326144, 1495424, 14930048, 251548592, 2415919104, 75497472, 11010048, 4902912, 5870592, 17945088, 134370432, 2263937328, 66296291072
Offset: 1

Views

Author

Geoffrey Critzer, Mar 28 2013

Keywords

Examples

			Triangle T(n,k) begins:
       1;
       2,     1;
       6,     3,    4;
      32,    12,   16,    38;
     320,    80,   80,   190,   728;
    6144,   960,  640,  1140,  4368,  26704;
  229376, 21504, 8960, 10640, 30576, 186928, 1866256;
  ...
		

Crossrefs

Cf. A001187, A006125, A123903 (column 1), A125207 (row sums), A182166 (column 2).

Programs

  • Magma
    function b(n) // b = A001187
      if n eq 0 then return 1;
      else return 2^Binomial(n,2) - (&+[Binomial(n-1,j-1)*2^Binomial(n-j,2)*b(j): j in [0..n-1]]);
      end if; return b;
    end function;
    A223894:= func< n,k | Binomial(n,k)*2^Binomial(n-k,2)*b(k) >;
    [A223894(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2022
    
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    T:= (n, k)-> binomial(n, k)*b(k)*2^((n-k)*(n-k-1)/2):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    nn = 9; f[list_] := Select[list, # > 0 &]; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g] + 1, {x, 0, nn}], x], 1]; Map[f, Drop[Transpose[Table[Range[0, nn]! CoefficientList[Series[a[[n]] x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1]] // Grid
  • SageMath
    @CachedFunction
    def b(n): # b = A001187
        if (n==0): return 1
        else: return 2^binomial(n,2) - sum(binomial(n-1,j-1)*2^binomial(n-j,2)*b(j) for j in range(n))
    def A223894(n,k): return binomial(n,k)*2^binomial(n-k,2)*b(k)
    flatten([[A223894(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2022

Formula

E.g.f. for column k: A001187(n)*x^n/n!*A(x) where A(x) is the e.g.f. for A006125.
Sum_{k=0..n} T(n, k) = A125207(n).
T(n, 1) = A123903(n).
T(n, 2) = A182166(n).
T(n, n) = A001187(n). - G. C. Greubel, Oct 03 2022

A095338 Total number of leaves in the labeled graphs of order n.

Original entry on oeis.org

0, 2, 12, 96, 1280, 30720, 1376256, 117440512, 19327352832, 6184752906240, 3870280929771520, 4755801206503243776, 11510768301994760208384, 55006124792465627449131008, 519934816499859715457632174080, 9735556609752801803494680617287680, 361550014853497117429835520396253724672
Offset: 1

Views

Author

Eric W. Weisstein, Jun 02 2004

Keywords

Comments

A leaf is defined as a vertex of degree (or valence) 1. - Michael Somos, Mar 13 2014

Examples

			G.f. = 2*x^2 + 12*x^3 + 96*x^4 + 1280*x^5 + 30720*x^6 + 1376256*x^7 + ...
		

Crossrefs

Cf. A182166.

Programs

Formula

Conjecture: a(n) = n*(n-1)*2^binomial(n-1,2). - Vladeta Jovovic, Jan 26 2006
a(n) = n*(n-1)*2^binomial(n-1,2) is correct, since counting the total number of leaves in the labeled graphs of order n is equivalent to counting all labeled rooted graphs of order n where the root is a leaf. - Bertran Steinsky, Mar 04 2014
a(n) = 2^(n-1) * A182166(n) for n>=2. - Joerg Arndt, Mar 12 2014
Showing 1-2 of 2 results.