cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A184004 a(n) = n + floor(sqrt(4n/3)); complement of A184005.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2011

Keywords

Crossrefs

Cf. A184005.

Programs

  • Mathematica
    a=4/3; b=0;
    Table[n+Floor[(a*n+b)^(1/2)],{n,80}]
    Table[n-1+Ceiling[(n*n-b)/a],{n,60}]
  • PARI
    for(n=1, 100, print1(n + floor(sqrt(4*n/3)), ", ")) \\ G. C. Greubel, Jul 22 2017
    
  • PARI
    a(n) = n + sqrtint(4*n/3); \\ Michel Marcus, Oct 01 2024
    
  • Python
    from math import isqrt
    def A184004(n): return n+isqrt((n<<2)//3) # Chai Wah Wu, Oct 01 2024

A270710 a(n) = 3*n^2 + 2*n - 1.

Original entry on oeis.org

-1, 4, 15, 32, 55, 84, 119, 160, 207, 260, 319, 384, 455, 532, 615, 704, 799, 900, 1007, 1120, 1239, 1364, 1495, 1632, 1775, 1924, 2079, 2240, 2407, 2580, 2759, 2944, 3135, 3332, 3535, 3744, 3959, 4180, 4407, 4640, 4879, 5124, 5375, 5632, 5895, 6164, 6439, 6720, 7007, 7300, 7599
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2016

Keywords

Comments

In general, the ordinary generating function for the values of quadratic polynomial p*n^2 + q*n + k, is (k + (p + q - 2*k)*x + (p - q + k)*x^2)/(1 - x)^3.
From Bruno Berselli, Mar 25 2016: (Start)
This sequence and A140676 provide all integer m such that 3*m + 4 is a square.
Numbers related to A135713 by A135713(n) = n*a(n) - Sum_{k=0..n-1} a(k).
After -1, second bisection of A184005. (End)

Examples

			a(0) = 3*0^2 + 2*0 - 1 = -1;
a(1) = 3*1^2 + 2*1 - 1 =  4;
a(2) = 3*2^2 + 2*2 - 1 = 15;
a(3) = 3*3^2 + 2*3 - 1 = 32, etc.
		

Crossrefs

Programs

  • GAP
    List([0..50], n -> 3*n^2+2*n-1); # Bruno Berselli, Feb 16 2018
  • Magma
    [3*n^2+2*n-1: n in [0..50]]; // Bruno Berselli, Mar 25 2016
    
  • Mathematica
    Table[3 n^2 + 2 n - 1, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {-1, 4, 15}, 51]
  • Maxima
    makelist(3*n^2+2*n-1, n, 0, 50); /* Bruno Berselli, Mar 25 2016 */
    
  • PARI
    Vec((-1 + 7*x)/(1 - x)^3 + O(x^60)) \\ Michel Marcus, Mar 22 2016
    
  • PARI
    lista(nn) = {for(n=0, nn, print1(3*n^2 + 2*n - 1, ", ")); } \\ Altug Alkan, Mar 25 2016
    
  • PARI
    vector(50, n, n--; 3*n^2+2*n-1) \\ Bruno Berselli, Mar 25 2016
    
  • Sage
    [3*n^2+2*n-1 for n in (0..50)] # Bruno Berselli, Mar 25 2016
    

Formula

G.f.: (-1 + 7*x)/(1 - x)^3.
E.g.f.: exp(x)*(-1 + 5*x + 3*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A033428(n) + A060747(n).
a(n) = A045944(n) - 1 = A056109(n) - 2.
a(-n) = A140676(n-1), with A140676(-1) = -1.
Sum_{n>=0} 1/a(n) = 3*(log(3) - 2)/8 - Pi/(8*sqrt(3)) = -0.564745312278736...
a(n) = Sum_{i = n-1..2*n-1} (2*i + 1). - Bruno Berselli, Feb 16 2018
a(n) = A000290(n+1) + 2*A000290(n) - 2. - Leo Tavares, May 28 2023
Sum_{n>=0} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + 3/4. - Amiram Eldar, Jul 20 2023

A179741 a(n) = (2*n+1)*(6*n-1).

Original entry on oeis.org

-1, 15, 55, 119, 207, 319, 455, 615, 799, 1007, 1239, 1495, 1775, 2079, 2407, 2759, 3135, 3535, 3959, 4407, 4879, 5375, 5895, 6439, 7007, 7599, 8215, 8855, 9519, 10207, 10919, 11655, 12415, 13199, 14007, 14839, 15695, 16575, 17479, 18407
Offset: 0

Views

Author

Paul Curtz, Jan 10 2011

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + 24*n + 16.
a(n) = 2*a(n-1) - a(n-2) + 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A077591(n+1) + A061037(2*n-1).
From Bruno Berselli, Jan 25 2011: (Start)
G.f.: (-1 +18*x +7*x^2)/(1-x)^3.
a(n) = A184005(4*n) (n>0). (End)
E.g.f.: (-1 + 16*x + 12*x^2)*exp(x). - G. C. Greubel, Jul 22 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = (3*log(3) - Pi*sqrt(3) + 4)/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*Pi - 2*sqrt(3)*log(sqrt(3)+2) - 4)/16. (End)

Extensions

Edited by N. J. A. Sloane, Jan 12 2011

A185918 a(n) = 12*n^2 - 2*n - 1.

Original entry on oeis.org

-1, 9, 43, 101, 183, 289, 419, 573, 751, 953, 1179, 1429, 1703, 2001, 2323, 2669, 3039, 3433, 3851, 4293, 4759, 5249, 5763, 6301, 6863, 7449, 8059, 8693, 9351, 10033, 10739, 11469, 12223, 13001, 13803, 14629, 15479, 16353, 17251, 18173, 19119, 20089, 21083, 22101, 23143, 24209
Offset: 0

Views

Author

Paul Curtz, Feb 08 2011

Keywords

Comments

The second quadrisection of A184005(n-1) is A179741(n).
The first quadrisection of A184005(n-1) is a(n).
Sequence found by reading the line from -1, in the direction -1, 9, ..., in the square spiral whose vertices are -1 together with the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = A184005(4*n-1). [corrected by R. J. Mathar, Aug 24 2011]
a(n) = a(n-1) + 24*n - 14.
a(n) = 2*a(n-1) - a(n) + 24.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(1+x)*(13*x-1) / (x-1)^3. - R. J. Mathar, Aug 24 2011
a(n) = A154106(n-1) - 2, n >= 1. - Omar E. Pol, Jul 19 2012
E.g.f.: (12*x^2 + 10*x -1)*exp(x). - G. C. Greubel, Jul 22 2017

Extensions

More terms from Vincenzo Librandi, Feb 09 2011

A281151 a(n) = floor(4*n*(n+1)/5).

Original entry on oeis.org

0, 1, 4, 9, 16, 24, 33, 44, 57, 72, 88, 105, 124, 145, 168, 192, 217, 244, 273, 304, 336, 369, 404, 441, 480, 520, 561, 604, 649, 696, 744, 793, 844, 897, 952, 1008, 1065, 1124, 1185, 1248, 1312, 1377, 1444, 1513, 1584, 1656, 1729, 1804, 1881, 1960, 2040, 2121, 2204, 2289
Offset: 0

Views

Author

Bruno Berselli, Jan 16 2017

Keywords

Crossrefs

Subsequence of A047462.
Partial sums of A047486.
Cf. A184005: n^2 - floor((n-2)^2/4).
Cf. sequences with formula floor(k*n*(n+1)/(k+1)): A000217 (k=1), A143978 (k=2), A281026 (k=3), this sequence (k=4), A194275 (k=5).

Programs

  • Magma
    [4*n*(n+1) div 5: n in [0..60]];
  • Mathematica
    Table[Floor[4 n (n + 1)/5], {n, 0, 60}]
  • Maxima
    makelist(floor(4*n*(n+1)/5), n, 0, 60);
    
  • PARI
    vector(60, n, n--; floor(4*n*(n+1)/5))
    
  • Python
    [int(4*n*(n+1)/5) for n in range(60)]
    
  • Sage
    [floor(4*n*(n+1)/5) for n in range(60)]
    

Formula

O.g.f.: x*(1 + x^2)*(1 + x)^2/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n-1) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) = a(n-5) + 8*(n-2).
a(5*k+r) = 20*k^2 + 4*(2*r+1)*k + r^2, where 0 <= r <= 4. Example: for r=3, a(5*k+3) = (2*k+1)*(10*k+9), which gives: 9, 57, 145, 273, 441, 649 etc. Also, a(n) belongs to A047462, in fact: for r = 0 or 4, a(n) == 0 (mod 8); for r = 1 or 3, a(n) == 1 (mod 8); for r = 2, a(n) == 4 (mod 8).
a(n) = a(-n) + A047462(n).
a(n) = n^2 - floor((n-2)^2/5).
Showing 1-5 of 5 results.