A007645 Generalized cuban primes: primes of the form x^2 + xy + y^2; or primes of the form x^2 + 3*y^2; or primes == 0 or 1 (mod 3).
3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613
Offset: 1
References
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, p. 50.
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 7.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Wagon, S. "Eisenstein Primes." Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- U. P. Nair, Elementary results on the binary quadratic form a^2+ab+b^2, arXiv:math/0408107 [math.NT], 2004.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Eric Weisstein's World of Mathematics, Eisenstein Integer.
Crossrefs
Programs
-
Haskell
a007645 n = a007645_list !! (n-1) a007645_list = filter ((== 1) . a010051) $ tail a003136_list -- Reinhard Zumkeller, Jul 11 2013, Oct 30 2011
-
Maple
select(isprime,[3, seq(6*k+1, k=1..1000)]); # Robert Israel, Dec 12 2014
-
Mathematica
Join[{3},Select[Prime[Range[150]],Mod[#,3]==1&]] (* Harvey P. Dale, Aug 21 2021 *)
-
PARI
forprime(p=2,1e3,if(p%3<2,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
Formula
p == 0 or 1 (mod 3).
{3} UNION A002476. - R. J. Mathar, Oct 28 2008
Extensions
Entry revised by N. J. A. Sloane, Jan 29 2013
Comments