A070826
One half of product of first n primes A000040.
Original entry on oeis.org
1, 3, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 3234846615, 100280245065, 3710369067405, 152125131763605, 6541380665835015, 307444891294245705, 16294579238595022365, 961380175077106319535, 58644190679703485491635, 3929160775540133527939545, 278970415063349480483707695
Offset: 1
-
a:=n->mul(ithprime(j), j=2..n):seq(a(n), n=1..17); # Zerinvary Lajos, Aug 24 2008
-
Rest[ FoldList[ Times, 1, Prime[ Range[ 18]] ]]/2 (* Robert G. Wilson v, Feb 17 2004 *)
FoldList[Times, 1, Prime[Range[2, 18]]] (* Zak Seidov, Jan 26 2009 *)
-
a(n) = prod(k=2, n, prime(k)) \\ Michel Marcus, Mar 25 2017, simplified by M. F. Hasler, Jul 09 2025
-
from sympy import primorial
def A070826(n): return primorial(n)>>1 # Chai Wah Wu, Jul 21 2022
A024451
a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).
Original entry on oeis.org
0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0
0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.
Subsequence of
A048103 (after the initial 0).
Cf.
A369972 (k where prime(1+k)|a(k)),
A369973 (corresponding primorials),
A293457 (corresponding primes),
A377992 (antiderivatives of the terms > 1 of this sequence).
-
[ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ]; // Bruno Berselli, Apr 11 2011
-
h:= n-> add(1/(ithprime(i)),i=1..n);
t1:=[seq(h(n),n=0..50)];
t1a:=map(numer,t1); # A024451
t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
-
a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18] (* Jean-François Alcover, Apr 11 2011 *)
f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A024451 *)
(* Clark Kimberling, Dec 29 2011 *)
Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
-
a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
-
from sympy import prime
from fractions import Fraction
def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
-
from math import prod
from sympy import prime
def A024451(n):
q = prod(plist:=tuple(prime(i) for i in range(1,n+1)))
return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022
A060389
a(1)=p_1, a(2)=p_1 + p_1*p_2, a(3)=p_1 + p_1*p_2 + p_1*p_2*p_3, ... where p_i is the i-th prime.
Original entry on oeis.org
2, 8, 38, 248, 2558, 32588, 543098, 10242788, 233335658, 6703028888, 207263519018, 7628001653828, 311878265181038, 13394639596851068, 628284422185342478, 33217442899375387208, 1955977793053588026278
Offset: 1
a(4) = 248 because p_1 + p_1*p_2 + p_1*p_2*p_3 + p_1*p_2*p_3*p_4 = 2 + 6 + 30 + 210 = 248.
a(5) = 2558: A002110(3) = 30, A286624(4) = 85, a(2) = 8; 30*85 + 8 = 2558. - _Bob Selcoe_, Oct 12 2017
-
for n from 1 to 30 do printf(`%d,`,sum(product(ithprime(i), i=1..j), j=1..n)) od:
-
Accumulate[Denominator[Accumulate[1/Prime[Range[20]]]]] (* Alonso del Arte, Mar 21 2013 *)
Accumulate@ FoldList[Times, Prime@ Range@ 17] (* Michael De Vlieger, May 04 2017 *)
-
a(n)=my(s,P=1); forprime(p=2,prime(n),s+=P*=p); s \\ Charles R Greathouse IV, Feb 05 2014
Showing 1-3 of 3 results.
Comments