cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A019727 Decimal expansion of sqrt(2*Pi).

Original entry on oeis.org

2, 5, 0, 6, 6, 2, 8, 2, 7, 4, 6, 3, 1, 0, 0, 0, 5, 0, 2, 4, 1, 5, 7, 6, 5, 2, 8, 4, 8, 1, 1, 0, 4, 5, 2, 5, 3, 0, 0, 6, 9, 8, 6, 7, 4, 0, 6, 0, 9, 9, 3, 8, 3, 1, 6, 6, 2, 9, 9, 2, 3, 5, 7, 6, 3, 4, 2, 2, 9, 3, 6, 5, 4, 6, 0, 7, 8, 4, 1, 9, 7, 4, 9, 4, 6, 5, 9, 5, 8, 3, 8, 3, 7, 8, 0, 5, 7, 2, 6
Offset: 1

Views

Author

Keywords

Comments

Pickover says that the expression: lim_{n->oo} e^n(n!) / (n^n * sqrt(n)) = sqrt(2*Pi) is beautiful because it connects Pi, e, radicals, factorials and infinite limits. - Jason Earls, Mar 16 2001
Appears in the formula of the normal distribution. - Johannes W. Meijer, Feb 23 2013
sqrt(2*Pi)*sqrt(n) is the expected height of a labeled random tree of order n (see Rényi, Szekeres, 1967, formula (4.6)). - Hugo Pfoertner, May 18 2023
The constant in the formula known as "Stirling's approximation" (or "Stirling's formula"). It is sometimes called Stirling constant. The formula without the exact value of the constant was discovered by the French mathematician Abraham de Moivre (1667-1754), and was published in his book (1730). The exact value of the constant was found by the Scottish mathematician James Stirling (1692-1770) and was published in his book "Methodus differentialis" (1730). - Amiram Eldar, Jul 08 2023

Examples

			2.506628274631000502415765284811045253006986740609938316629923576342293....
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
  • Clifford A. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 307.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.

Crossrefs

Cf. A058293 (continued fraction), A231863 (inverse), A000796 (Pi).

Programs

  • Magma
    R:= RealField(100); Sqrt(2*Pi(R)); // G. C. Greubel, Mar 08 2018
  • Mathematica
    RealDigits[Sqrt[2Pi],10,120][[1]] (* Harvey P. Dale, Dec 12 2012 *)
  • Maxima
    fpprec: 100$ ev(bfloat(sqrt(2*%pi))); /* Martin Ettl, Oct 11 2012 */
    
  • PARI
    default(realprecision, 20080); x=sqrt(2*Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019727.txt", n, " ", d)); \\ Harry J. Smith, May 31 2009
    

Formula

Equals lim_{n->oo} e^n*(n!)/n^n*sqrt(n).
Also equals Integral_{x >= 0} W(1/x^2) where W is the Lambert function, which is also known as ProductLog. - Jean-François Alcover, May 27 2013
Also equals the generalized Glaisher-Kinkelin constant A_0, see the Finch reference. - Jean-François Alcover, Dec 23 2014
Equals exp(-zeta'(0)). See Kimoto et al. - Michel Marcus, Jun 27 2019

A203142 Decimal expansion of Gamma(1/8).

Original entry on oeis.org

7, 5, 3, 3, 9, 4, 1, 5, 9, 8, 7, 9, 7, 6, 1, 1, 9, 0, 4, 6, 9, 9, 2, 2, 9, 8, 4, 1, 2, 1, 5, 1, 3, 3, 6, 2, 4, 6, 1, 0, 4, 1, 9, 5, 8, 8, 1, 4, 9, 0, 7, 5, 9, 4, 0, 9, 8, 3, 1, 2, 7, 8, 9, 7, 7, 7, 6, 6, 6, 3, 6, 5, 7, 1, 9, 8, 9, 0, 6, 4, 1, 2, 8, 3, 3, 5, 2, 8, 6, 2, 6, 8, 1, 0, 3, 5, 6, 8, 5
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			7.5339415987976119046992298412151336246104195881490759409831...
		

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/8); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[Gamma[1/8], 10, 100][[1]] (* Bruno Berselli, Dec 13 2012 *)
    RealDigits[Pi^(1/8) * 2^(17/8) * EllipticK[1/2]^(1/4) * EllipticK[3 - 2*Sqrt[2]]^(1/2), 10, 100][[1]] (* Vaclav Kotesovec, Apr 15 2024 *)
  • PARI
    default(realprecision, 100); gamma(1/8) \\ G. C. Greubel, Jan 15 2017
    

Formula

this * A203144 * A231863 /2^(1/4) = A068466. - R. J. Mathar, Jan 15 2021

A203145 Decimal expansion of Gamma(5/6).

Original entry on oeis.org

1, 1, 2, 8, 7, 8, 7, 0, 2, 9, 9, 0, 8, 1, 2, 5, 9, 6, 1, 2, 6, 0, 9, 0, 1, 0, 9, 0, 2, 5, 8, 8, 4, 2, 0, 1, 3, 3, 2, 6, 7, 8, 7, 4, 4, 1, 6, 6, 4, 7, 5, 5, 4, 5, 1, 7, 5, 2, 0, 8, 3, 5, 1, 4, 3, 3, 3, 7, 7, 0, 5, 1, 0, 9, 8, 7, 5, 0, 3, 9, 8, 7, 0, 5, 5, 4, 0, 0, 9, 0, 4, 4, 3, 8, 4, 0, 9, 7, 5
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			1.1287870299081259612609010902588420133267874416647554517520...
		

Crossrefs

Programs

Formula

A073005 * this * A231863 * A010768 = A073006. - R. J. Mathar, Jan 15 2021
Equals 2*Pi/Gamma(1/6) = A019692 / A175379. - Amiram Eldar, Jul 04 2023
Equals 2^(4/3) * Pi^(3/2) / (sqrt(3) * Gamma(1/3)^2). - Vaclav Kotesovec, Jul 04 2023

A203146 Decimal expansion of Gamma(7/8).

Original entry on oeis.org

1, 0, 8, 9, 6, 5, 2, 3, 5, 7, 4, 2, 2, 8, 9, 6, 9, 5, 1, 2, 5, 2, 3, 7, 6, 7, 5, 5, 1, 0, 2, 8, 9, 2, 9, 7, 1, 1, 4, 7, 8, 7, 0, 0, 6, 7, 7, 6, 7, 5, 6, 5, 1, 2, 0, 5, 1, 3, 7, 0, 4, 0, 4, 3, 2, 5, 3, 6, 2, 6, 4, 1, 7, 4, 6, 5, 8, 7, 9, 5, 0, 3, 3, 5, 9, 5, 8, 9, 6, 7, 4, 8, 3, 6, 1, 8, 4, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			1.0896523574228969512523767551028929711478700677675651205137...
		

Crossrefs

Programs

Formula

A068465 = A231863 * A010767 * A203143 * this. - R. J. Mathar, Jan 15 2021

A203125 Decimal expansion of (1/8)! = Gamma(9/8).

Original entry on oeis.org

9, 4, 1, 7, 4, 2, 6, 9, 9, 8, 4, 9, 7, 0, 1, 4, 8, 8, 0, 8, 7, 4, 0, 3, 7, 3, 0, 1, 5, 1, 8, 9, 1, 7, 0, 3, 0, 7, 6, 3, 0, 2, 4, 4, 8, 5, 1, 8, 6, 3, 4, 4, 9, 2, 6, 2, 2, 8, 9, 0, 9, 8, 7, 2, 2, 2, 0, 8, 2, 9, 5, 7, 1, 4, 9, 8, 6, 3, 3, 0, 1, 6, 0, 4, 1, 9, 1, 0, 7, 8, 3, 5, 1, 2, 9, 4, 6, 0, 6
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.94174269984970148808740373015189170307630244851863449262289...
		

Crossrefs

Programs

Formula

Equals A203142/8. - R. J. Mathar, Jan 15 2021
A203144 *this *A231863 *A011006 = A068467. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^8) dx. - Ilya Gutkovskiy, Sep 18 2021

A203126 Decimal expansion of (1/6)! = Gamma(7/6).

Original entry on oeis.org

9, 2, 7, 7, 1, 9, 3, 3, 3, 6, 3, 0, 0, 3, 9, 2, 0, 0, 7, 0, 8, 3, 4, 9, 4, 8, 2, 5, 3, 4, 6, 2, 1, 0, 1, 8, 5, 6, 6, 4, 6, 6, 5, 1, 9, 1, 4, 5, 4, 7, 5, 5, 7, 6, 9, 3, 6, 1, 2, 4, 1, 0, 4, 3, 8, 7, 1, 5, 1, 2, 5, 0, 4, 6, 9, 6, 3, 3, 7, 1, 7, 5, 8, 3, 8, 9, 8, 2, 7, 5, 6, 0, 3, 5, 0, 3, 6, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.92771933363003920070834948253462101856646651914547557693612...
		

Crossrefs

Programs

Formula

Equals A175379/6. - R. J. Mathar, Jan 15 2021
A073006 * this * A231863 * A329219 = A202623. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^6) dx. - Ilya Gutkovskiy, Sep 18 2021

A096616 Decimal expansion of 2/3 + zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

0, 8, 4, 0, 6, 9, 5, 0, 8, 7, 2, 7, 6, 5, 5, 9, 9, 6, 4, 6, 1, 4, 8, 9, 5, 0, 2, 4, 7, 9, 0, 3, 5, 5, 1, 1, 9, 3, 7, 5, 7, 2, 7, 9, 6, 4, 6, 8, 0, 1, 1, 9, 6, 1, 8, 4, 2, 9, 7, 2, 7, 2, 4, 6, 0, 0, 1, 3, 5, 9, 7, 9, 0, 7, 0, 1, 6, 7, 7, 2, 0, 6, 2, 4, 8, 7, 4, 7, 5, 9, 8, 3, 1, 8, 9, 0, 6, 3, 6, 0, 9, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jun 30 2004

Keywords

Examples

			0.0840695087...
		

References

  • David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, pp. 18 and 227.
  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, MA: A K Peters, 2004, pp. 15-17.

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[2/3 + Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]]}] (* Vaclav Kotesovec, Aug 16 2015 *)
  • PARI
    2/3 + zeta(1/2)/sqrt(2*Pi) \\ Michel Marcus, Aug 15 2015

Formula

Equals Sum_{k>=1} (1/sqrt(2*Pi*k) - k^k/(k!*exp(k))). - Amiram Eldar, Oct 13 2020
Equals 2/3 - A134469. - R. J. Mathar, Dec 17 2024

A203127 Decimal expansion of (3/8)! = Gamma(11/8).

Original entry on oeis.org

8, 8, 8, 9, 1, 3, 5, 6, 9, 1, 5, 6, 2, 2, 5, 3, 4, 0, 7, 4, 2, 4, 2, 7, 5, 6, 4, 0, 6, 6, 2, 4, 4, 6, 9, 1, 2, 0, 7, 7, 7, 5, 3, 0, 1, 2, 5, 9, 5, 9, 6, 8, 7, 0, 4, 1, 5, 6, 7, 2, 6, 0, 0, 5, 0, 2, 4, 3, 5, 5, 7, 4, 2, 5, 9, 2, 5, 0, 6, 7, 1, 9, 2, 4, 4, 9, 2, 8, 7, 5, 6, 3, 9, 1, 3, 0, 5, 5, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			0.88891356915622534074242756406624469120777530125959687041567...
		

Crossrefs

Programs

Formula

Equals 3*A203143/8. - R. J. Mathar, Jan 15 2021
A203146 * this * A231863 * A011027 = A203130. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^(8/3)) dx. - Ilya Gutkovskiy, Apr 10 2024

A235916 Decimal expansion of 3/sqrt(2*Pi).

Original entry on oeis.org

1, 1, 9, 6, 8, 2, 6, 8, 4, 1, 2, 0, 4, 2, 9, 8, 0, 3, 3, 8, 1, 9, 8, 3, 8, 1, 7, 9, 8, 0, 3, 1, 4, 5, 6, 0, 5, 4, 2, 7, 5, 7, 5, 8, 9, 3, 4, 9, 4, 8, 0, 3, 9, 7, 2, 9, 9, 7, 7, 7, 7, 4, 8, 9, 0, 1, 1, 9, 7, 3, 7, 7, 7, 6, 9, 7, 9, 0, 5, 5, 1, 5, 5, 0, 3, 7, 5, 7, 0, 0, 1, 7, 2, 1, 9, 2, 0, 8, 0, 9, 2, 9, 0, 9, 0
Offset: 1

Views

Author

Rick L. Shepherd, Jan 16 2014

Keywords

Comments

The radius of the large circle, the a-value in the MathWorld link, of a deltoid (3-cusped hypocycloid) with area 1. Thus, for any r > 0, this particular a*sqrt(r) is the radius of the large circle of a deltoid with area r. The radius of the small circle is a*sqrt(r)/3 = A231863*sqrt(r), because A231863 is the radius of the small circle, the b-value in the MathWorld link, of a deltoid with area 1.

Examples

			1.1968268412042980338198381798031456054275758934948039729977774890119737...
		

Crossrefs

Cf. A019727, A019728, A231863 (corresponding small circle radius).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 3/Sqrt(2*Pi(R)); // G. C. Greubel, Sep 30 2018
  • Mathematica
    RealDigits[N[3/Sqrt[2Pi],105]] [[1]]
  • PARI
    default(realprecision, 120); 3/sqrt(2*Pi)
    

Formula

3/sqrt(2*Pi) = 3/A019727 = 3*A231863 = 1/A019728.

A203132 Decimal expansion of (7/8)! = Gamma(15/8).

Original entry on oeis.org

9, 5, 3, 4, 4, 5, 8, 1, 2, 7, 4, 5, 0, 3, 4, 8, 3, 2, 3, 4, 5, 8, 2, 9, 6, 6, 0, 7, 1, 5, 0, 3, 1, 3, 4, 9, 7, 5, 4, 3, 8, 6, 3, 0, 9, 2, 9, 6, 6, 1, 9, 4, 8, 0, 4, 4, 9, 4, 9, 1, 0, 3, 7, 8, 4, 6, 9, 2, 3, 1, 1, 5, 2, 8, 2, 6, 4, 4, 5, 6, 5, 4, 3, 9, 6, 4, 0, 9, 6, 5, 4, 8, 1, 6, 6, 1, 2, 1, 4
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			0.95344581274503483234582966071503134975438630929661948044949...
		

Programs

Formula

Equals 7*A203146/8. - R. J. Mathar, Jan 15 2021
A203127 * this * A231863*2^(9/4) = (7/4)* A203130. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^(8/7)) dx. - Ilya Gutkovskiy, Apr 10 2024
Showing 1-10 of 12 results. Next