A128014 Central binomial coefficients C(2n,n) repeated.
1, 1, 2, 2, 6, 6, 20, 20, 70, 70, 252, 252, 924, 924, 3432, 3432, 12870, 12870, 48620, 48620, 184756, 184756, 705432, 705432, 2704156, 2704156, 10400600, 10400600, 40116600, 40116600, 155117520, 155117520, 601080390, 601080390
Offset: 0
Programs
-
Haskell
a128014 = a000984 . flip div 2 -- Reinhard Zumkeller, Nov 14 2014
-
Mathematica
(1+x)/Sqrt[1-4x^2] + O[x]^34 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 07 2017 *) With[{cb=Table[Binomial[2n,n],{n,0,20}]},Riffle[cb,cb]] (* Harvey P. Dale, Feb 17 2020 *)
Formula
G.f.: (1+x)/sqrt(1-4*x^2).
a(n) = C(n,n/2)*(1+(-1)^n)/2 + C(n-1,(n-1)/2)*(1-(-1)^n)/2.
a(n) = (1/Pi)*Integral_{x=-2..2} x^n*(1+x)/(x*sqrt(4-x^2)), as moment sequence.
E.g.f. of a(n+1): Bessel_I(0,2*x)+2*Bessel_I(1,2*x). - Paul Barry, Mar 26 2010
n*a(n) +(n-2)*a(n-1) +4*(-n+1)*a(n-2) +4*(-n+3)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
a(n) = 2^n*Product_{k=0..n-1} ((k/n+1/n)/2)^((-1)^k). - Peter Luschny, Dec 03 2013
From Reinhard Zumkeller, Nov 14 2014: (Start)
a(n) = A000984(floor(n/2)).
Comments