cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 108 results. Next

A003242 Number of compositions of n such that no two adjacent parts are equal (these are sometimes called Carlitz compositions).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 14, 23, 39, 71, 124, 214, 378, 661, 1152, 2024, 3542, 6189, 10843, 18978, 33202, 58130, 101742, 178045, 311648, 545470, 954658, 1670919, 2924536, 5118559, 8958772, 15680073, 27443763, 48033284, 84069952, 147142465, 257534928, 450748483, 788918212
Offset: 0

Views

Author

E. Rodney Canfield

Keywords

Examples

			From _Joerg Arndt_, Oct 27 2012:  (Start)
The 23 such compositions of n=7 are
[ 1]  1 2 1 2 1
[ 2]  1 2 1 3
[ 3]  1 2 3 1
[ 4]  1 2 4
[ 5]  1 3 1 2
[ 6]  1 3 2 1
[ 7]  1 4 2
[ 8]  1 5 1
[ 9]  1 6
[10]  2 1 3 1
[11]  2 1 4
[12]  2 3 2
[13]  2 4 1
[14]  2 5
[15]  3 1 2 1
[16]  3 1 3
[17]  3 4
[18]  4 1 2
[19]  4 2 1
[20]  4 3
[21]  5 2
[22]  6 1
[23]  7
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 191.

Crossrefs

Row sums of A232396, A241701.
Cf. A241902.
Column k=1 of A261960.
Cf. A048272.
Compositions with adjacent parts coprime are A167606.
The complement is counted by A261983.

Programs

Formula

a(n) = Sum_{k=1..n} A048272(k)*a(n-k), n>1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/(1 - Sum_{k>0} x^k/(1+x^k)).
a(n) ~ c r^n where c is approximately 0.456387 and r is approximately 1.750243. (Formula from Knopfmacher and Prodinger reference.) - Franklin T. Adams-Watters, May 27 2010. With better precision: r = 1.7502412917183090312497386246398158787782058181381590561316586... (see A241902), c = 0.4563634740588133495321001859298593318027266156100046548066205... - Vaclav Kotesovec, Apr 30 2014
G.f. is the special case p=2 of 1/(1 - Sum_{k>0} (z^k/(1-z^k) - p*z^(k*p)/(1-z^(k*p)))), see A129922. - Joerg Arndt, Apr 28 2013
G.f.: 1/(1 - x * (d/dx) log(Product_{k>=1} (1 + x^k)^(1/k))). - Ilya Gutkovskiy, Oct 18 2018
Moebius transform of A329738. - Gus Wiseman, Nov 27 2019
For n>=2, a(n) = A128695(n) - A091616(n). - Vaclav Kotesovec, Jul 07 2020

Extensions

More terms from David W. Wilson

A116608 Triangle read by rows: T(n,k) is number of partitions of n having k distinct parts (n>=1, k>=1).

Original entry on oeis.org

1, 2, 2, 1, 3, 2, 2, 5, 4, 6, 1, 2, 11, 2, 4, 13, 5, 3, 17, 10, 4, 22, 15, 1, 2, 27, 25, 2, 6, 29, 37, 5, 2, 37, 52, 10, 4, 44, 67, 20, 4, 44, 97, 30, 1, 5, 55, 117, 52, 2, 2, 59, 154, 77, 5, 6, 68, 184, 117, 10, 2, 71, 235, 162, 20, 6, 81, 277, 227, 36, 4, 82, 338, 309, 58, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 19 2006

Keywords

Comments

Row n has floor([sqrt(1+8n)-1]/2) terms (number of terms increases by one at each triangular number).
Row sums yield the partition numbers (A000041).
Row n has length A003056(n), hence the first element of column k is in row A000217(k). - Omar E. Pol, Jan 19 2014

Examples

			T(6,2) = 6 because we have [5,1], [4,2], [4,1,1], [3,1,1,1], [2,2,1,1] and [2,1,1,1,1,1] ([6], [3,3], [3,2,1], [2,2,2] and [1,1,1,1,1,1] do not qualify).
Triangle starts:
  1;
  2;
  2,  1;
  3,  2;
  2,  5;
  4,  6, 1;
  2, 11, 2;
  4, 13, 5;
  3, 17, 10;
  4, 22, 15, 1;
  ...
		

Crossrefs

Cf. A060177 (reflected rows). - Alois P. Heinz, Jan 29 2014
Cf. A274174.

Programs

  • Maple
    g:=product(1+t*x^j/(1-x^j),j=1..30)-1: gser:=simplify(series(g,x=0,27)): for n from 1 to 23 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 23 do seq(coeff(P[n],t^j),j=1..floor(sqrt(1+8*n)/2-1/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else []; for j from 0 to n/i do zip((x, y)
          ->x+y, %, [`if`(j>0, 0, [][]), b(n-i*j, i-1)], 0) od; %[] fi
        end:
    T:= n-> subsop(1=NULL, [b(n, n)])[]:
    seq(T(n), n=1..30); # Alois P. Heinz, Nov 07 2012
    # third program
    nDiffParts := proc(L)
            nops(convert(L,set)) ;
    end proc:
    A116608 := proc(n,k)
            local a,L;
            a :=0 ;
            for L in combinat[partition](n) do
                    if nDiffParts(L) = k then
                            a := a+1 ;
                    end  if;
            end do:
            a ;
    end proc: # R. J. Mathar, Jun 07 2024
  • Mathematica
    p=Product[1+(y x^i)/(1-x^i),{i,1,20}];f[list_]:=Select[list,#>0&];Flatten[Map[f,Drop[CoefficientList[Series[p,{x,0,20}],{x,y}],1]]] (* Geoffrey Critzer, Nov 28 2011 *)
    Table[Length /@ Split[Sort[Length /@ Union /@ IntegerPartitions@n]], {n, 22}] // Flatten (* Robert Price, Jun 13 2020 *)
  • Python
    from math import isqrt
    from itertools import count, islice
    from sympy.utilities.iterables import partitions
    def A116608_gen(): # generator of terms
        return (sum(1 for p in partitions(n) if len(p)==k) for n in count(1) for k in range(1,(isqrt((n<<3)+1)-1>>1)+1))
    A116608_list = list(islice(A116608_gen(),30)) # Chai Wah Wu, Sep 14 2023
    
  • Python
    from functools import cache
    @cache
    def P(n: int, k: int, r: int) -> int:
        if n == 0: return 1 if k == 0 else 0
        if k == 0: return 0
        if r == 0: return 0
        return sum(P(n - r * j, k - 1, r - 1)
                   for j in range(1, n // r + 1)) + P(n, k, r - 1)
    def A116608triangle(rows: int) -> list[int]:
        return list(filter(None, [P(n, k, n) for n in range(1, rows)
                                  for k in range(1, n + 1)]))
    print(A116608triangle(22)) # Peter Luschny, Sep 14 2023, courtesy of Amir Livne Bar-on

Formula

G.f.: -1 + Product_{j=1..infinity} 1 + tx^j/(1-x^j).
T(n,1) = A000005(n) (number of divisors of n).
T(n,2) = A002133(n).
T(n,3) = A002134(n).
Sum_{k>=1} k * T(n,k) = A000070(n-1).
Sum_{k>=0} k! * T(n,k) = A274174(n). - Alois P. Heinz, Jun 13 2016
T(n + A000217(k), k) = A000712(n), for 0 <= n <= k [Briand]. - Álvar Ibeas, Nov 04 2020

A025047 Number of alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 12, 19, 29, 48, 75, 118, 186, 293, 460, 725, 1139, 1789, 2814, 4422, 6949, 10924, 17168, 26979, 42404, 66644, 104737, 164610, 258707, 406588, 639009, 1004287, 1578363, 2480606, 3898599, 6127152, 9629623, 15134213, 23785388, 37381849, 58750468
Offset: 0

Views

Author

Keywords

Comments

Original name: Wiggly sums: number of sums adding to n in which terms alternately increase and decrease or vice versa.

Examples

			From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(7)=19 such compositions of 7:
[ 1] +  [ 1 2 1 2 1 ]
[ 2] +  [ 1 2 1 3 ]
[ 3] +  [ 1 3 1 2 ]
[ 4] +  [ 1 4 2 ]
[ 5] +  [ 1 5 1 ]
[ 6] +  [ 1 6 ]
[ 7] -  [ 2 1 3 1 ]
[ 8] -  [ 2 1 4 ]
[ 9] +  [ 2 3 2 ]
[10] +  [ 2 4 1 ]
[11] +  [ 2 5 ]
[12] -  [ 3 1 2 1 ]
[13] -  [ 3 1 3 ]
[14] +  [ 3 4 ]
[15] -  [ 4 1 2 ]
[16] -  [ 4 3 ]
[17] -  [ 5 2 ]
[18] -  [ 6 1 ]
[19] 0  [ 7 ]
For A025048(7)-1=10 of these the first two parts are increasing (marked by '+'),
and for A025049(7)-1=8 the first two parts are decreasing (marked by '-').
The composition into one part is counted by both A025048 and A025049.
(End)
		

Crossrefs

Dominated by A003242 (anti-run compositions), complement A261983.
The ascending case is A025048.
The descending case is A025049.
The version allowing pairs (x,x) is A344604.
These compositions are ranked by A345167, permutations A349051.
The complement is counted by A345192, ranked by A345168.
The version for patterns is A345194 (with twins: A344605).
A001250 counts alternating permutations, complement A348615.
A011782 counts compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o alternating permutation, ranked by A345171.
A345170 counts partitions w/ alternating permutation, ranked by A345172.

Programs

  • Maple
    b:= proc(n, l, t) option remember; `if`(n=0, 1, add(
          b(n-j, j, 1-t), j=`if`(t=1, 1..min(l-1, n), l+1..n)))
        end:
    a:= n-> 1+add(add(b(n-j, j, i), i=0..1), j=1..n-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 31 2024
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],wigQ]],{n,0,15}] (* Gus Wiseman, Jun 17 2021 *)
  • PARI
    D(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k,if(k1, M[j-k,k-1]), M[j-k,n]-M[j-k,k] ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
    seq(n) = concat([1], D(n,0) + D(n,1) - vector(n,j,1)) \\ Andrew Howroyd, Jan 31 2024

Formula

a(n) = A025048(n) + A025049(n) - 1 = sum_k[A059881(n, k)] = sum_k[S(n, k) + T(n, k)] - 1 where if n>k>0 S(n, k) = sum_j[T(n - k, j)] over j>k and T(n, k) = sum_j[S(n - k, j)] over k>j (note reversal) and if n>0 S(n, n) = T(n, n) = 1; S(n, k) = A059882(n, k), T(n, k) = A059883(n, k). - Henry Bottomley, Feb 05 2001
a(n) ~ c * d^n, where d = 1.571630806607064114100138865739690782401305155950789062725..., c = 0.82222360450823867604750473815253345888526601460811483897... . - Vaclav Kotesovec, Sep 12 2014
a(n) = A344604(n) + 1 - n mod 2. - Gus Wiseman, Jun 17 2021

Extensions

Better name using a comment of Franklin T. Adams-Watters by Peter Luschny, Oct 31 2021

A374629 Irregular triangle listing the leaders of maximal weakly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 3, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2024

Keywords

Comments

The leaders of maximal weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 58654th composition in standard order is (1,1,3,2,4,1,1,1,2), with maximal weakly increasing runs ((1,1,3),(2,4),(1,1,1,2)), so row 58654 is (1,2,1).
The nonnegative integers, corresponding compositions, and leaders of maximal weakly increasing runs begin:
    0:      () -> ()      15: (1,1,1,1) -> (1)
    1:     (1) -> (1)     16:       (5) -> (5)
    2:     (2) -> (2)     17:     (4,1) -> (4,1)
    3:   (1,1) -> (1)     18:     (3,2) -> (3,2)
    4:     (3) -> (3)     19:   (3,1,1) -> (3,1)
    5:   (2,1) -> (2,1)   20:     (2,3) -> (2)
    6:   (1,2) -> (1)     21:   (2,2,1) -> (2,1)
    7: (1,1,1) -> (1)     22:   (2,1,2) -> (2,1)
    8:     (4) -> (4)     23: (2,1,1,1) -> (2,1)
    9:   (3,1) -> (3,1)   24:     (1,4) -> (1)
   10:   (2,2) -> (2)     25:   (1,3,1) -> (1,1)
   11: (2,1,1) -> (2,1)   26:   (1,2,2) -> (1)
   12:   (1,3) -> (1)     27: (1,2,1,1) -> (1,1)
   13: (1,2,1) -> (1,1)   28:   (1,1,3) -> (1)
   14: (1,1,2) -> (1)     29: (1,1,2,1) -> (1,1)
		

Crossrefs

Row-leaders are A065120.
Row-lengths are A124766.
Row-sums are A374630.
Positions of constant rows are A374633, counted by A374631.
Positions of strict rows are A374768, counted by A374632.
For other types of runs we have A374251, A374515, A374683, A374740, A374757.
Positions of non-weakly decreasing rows are A375137.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627, length A124767, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],LessEqual],{n,0,100}]

A329738 Number of compositions of n whose run-lengths are all equal.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 19, 24, 45, 75, 133, 215, 401, 662, 1177, 2035, 3587, 6190, 10933, 18979, 33339, 58157, 101958, 178046, 312088, 545478, 955321, 1670994, 2925717, 5118560, 8960946, 15680074, 27447350, 48033502, 84076143, 147142496, 257546243, 450748484, 788937192
Offset: 0

Views

Author

Gus Wiseman, Nov 20 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (1111)  (131)    (51)
                            (212)    (123)
                            (11111)  (132)
                                     (141)
                                     (213)
                                     (222)
                                     (231)
                                     (312)
                                     (321)
                                     (1122)
                                     (1212)
                                     (2121)
                                     (2211)
                                     (111111)
		

Crossrefs

Compositions with relatively prime run-lengths are A000740.
Compositions with equal multiplicities are A098504.
Compositions with equal differences are A175342.
Compositions with distinct run-lengths are A329739.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Length/@Split[#]&]],{n,0,10}]
  • PARI
    seq(n)={my(b=Vec(1/(1 - sum(k=1, n, x^k/(1+x^k) + O(x*x^n)))-1)); concat([1], vector(n, k, sumdiv(k, d, b[d])))} \\ Andrew Howroyd, Dec 30 2020

Formula

a(n) = Sum_{d|n} A003242(d).
a(n) = A329745(n) + A000005(n).

A374249 Numbers k such that the k-th composition in standard order has its equal parts contiguous.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 52, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2024

Keywords

Comments

These are compositions avoiding the patterns (1,2,1) and (2,1,2).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their standard compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  11: (2,1,1)
  12: (1,3)
  14: (1,1,2)
  15: (1,1,1,1)
  16: (5)
See A374253 for the complement: 13, 22, 25, 27, 29, ...
		

Crossrefs

The strict (also anti-run) case is A233564, counted by A032020.
Compositions of this type are counted by A274174.
Permutations of prime indices of this type are counted by A333175.
The complement is A374253 (anti-run A374254), counted by A335548.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A066099 lists compositions in standard order.
A124767 counts runs in standard compositions, anti-runs A333381.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
- A335470 counts (1,2,1)-matching compositions, ranks A335466.
- A335471 counts (1,2,1)-avoiding compositions, ranks A335467.
- A335472 counts (2,1,2)-matching compositions, ranks A335468.
- A335473 counts (2,1,2)-avoiding compositions, ranks A335469.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#]]&]

Formula

Equals A335467 /\ A335469.

A189076 Number of compositions of n that avoid the pattern 23-1.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 61, 118, 228, 440, 846, 1623, 3111, 5955, 11385, 21752, 41530, 79250, 151161, 288224, 549408, 1047034, 1995000, 3800662, 7239710, 13789219, 26261678, 50012275, 95237360, 181350695, 345315255, 657506300, 1251912618, 2383636280, 4538364446
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2011

Keywords

Comments

Note that an exponentiation ^(-1) is missing in Example 4.4. The notation in Theorem 4.3 is complete.
Theorem: The reverse of a composition avoids 23-1 iff its leaders of maximal weakly increasing runs are weakly decreasing. For example, the composition y = (3,2,1,2,2,1,2,5,1,1,1) has maximal weakly increasing runs ((3),(2),(1,2,2),(1,2,5),(1,1,1)), with leaders (3,2,1,1,1), which are weakly decreasing, so the reverse of y is counted under a(21). - Gus Wiseman, Aug 19 2024

Examples

			From _Gus Wiseman_, Aug 19 2024: (Start)
The a(6) = 31 compositions:
  .  (6)  (5,1)  (4,1,1)  (3,1,1,1)  (2,1,1,1,1)  (1,1,1,1,1,1)
          (1,5)  (1,4,1)  (1,3,1,1)  (1,2,1,1,1)
          (4,2)  (1,1,4)  (1,1,3,1)  (1,1,2,1,1)
          (2,4)  (3,2,1)  (1,1,1,3)  (1,1,1,2,1)
          (3,3)  (3,1,2)  (2,2,1,1)  (1,1,1,1,2)
                 (2,3,1)  (2,1,2,1)
                 (2,1,3)  (2,1,1,2)
                 (1,2,3)  (1,2,2,1)
                 (2,2,2)  (1,2,1,2)
                          (1,1,2,2)
Missing is (1,3,2), reverse of (2,3,1).
(End)
		

Crossrefs

The non-dashed version is A102726.
The version for 3-12 is A188900, complement A375406.
Avoiding 12-1 also gives A188920 in reverse.
The version for 13-2 is A189077.
For identical leaders we have A374631, ranks A374633.
For distinct leaders we have A374632, ranks A374768.
The complement is counted by A374636, ranks A375137.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.

Programs

  • Maple
    A189075 := proc(n) local g,i; g := 1; for i from 1 to n do 1-x^i/mul ( 1-x^j,j=i+1..n-i) ; g := g*% ; end do: g := expand(1/g) ; g := taylor(g,x=0,n+1) ; coeftayl(g,x=0,n) ; end proc: # R. J. Mathar, Apr 16 2011
  • Mathematica
    a[n_] := Module[{g = 1, xi}, Do[xi = 1 - x^i/Product[1 - x^j, {j, i+1, n-i}]; g = g xi, {i, n}]; SeriesCoefficient[1/g, {x, 0, n}]];
    a /@ Range[0, 32] (* Jean-François Alcover, Apr 02 2020, after R. J. Mathar *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,y_,z_,_,x_,_}/;xGus Wiseman, Aug 19 2024 *)

A345192 Number of non-alternating compositions of n.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 20, 45, 99, 208, 437, 906, 1862, 3803, 7732, 15659, 31629, 63747, 128258, 257722, 517339, 1037652, 2079984, 4167325, 8346204, 16710572, 33449695, 66944254, 133959021, 268028868, 536231903, 1072737537, 2145905285, 4292486690, 8586035993, 17173742032, 34350108745, 68704342523, 137415168084
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

First differs from A261983 at a(6) = 20, A261983(6) = 18.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(2) = 1 through a(6) = 20 compositions:
  (11)  (111)  (22)    (113)    (33)
               (112)   (122)    (114)
               (211)   (221)    (123)
               (1111)  (311)    (222)
                       (1112)   (321)
                       (1121)   (411)
                       (1211)   (1113)
                       (2111)   (1122)
                       (11111)  (1131)
                                (1221)
                                (1311)
                                (2112)
                                (2211)
                                (3111)
                                (11112)
                                (11121)
                                (11211)
                                (12111)
                                (21111)
                                (111111)
		

Crossrefs

The complement is counted by A025047 (ascend: A025048, descend: A025049).
Dominates A261983 (non-anti-run compositions), ranked by A348612.
These compositions are ranked by A345168, complement A345167.
The case without twins is A348377.
The version for factorizations is A348613.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A011782 counts compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A344654 counts non-twin partitions with no alternating permutation.
A345162 counts normal partitions with no alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions w/ alternating permutation, ranked by A345172.
A345165 counts partitions w/o alternating permutation, ranked by A345171.
Patterns:
- A128761 avoiding (1,2,3) adjacent.
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!wigQ[#]&]],{n,0,15}]

Formula

a(n) = A011782(n) - A025047(n).

A353847 Composition run-sum transformation in terms of standard composition numbers. The a(k)-th composition in standard order is the sequence of run-sums of the k-th composition in standard order. Takes each index of a row of A066099 to the index of the row consisting of its run-sums.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 6, 4, 8, 9, 8, 10, 12, 13, 10, 8, 16, 17, 18, 18, 20, 17, 22, 20, 24, 25, 24, 26, 20, 21, 18, 16, 32, 33, 34, 34, 32, 37, 38, 36, 40, 41, 32, 34, 44, 45, 42, 40, 48, 49, 50, 50, 52, 49, 54, 52, 40, 41, 40, 42, 36, 37, 34, 32, 64, 65, 66, 66
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			As a triangle:
   0
   1
   2  2
   4  5  6  4
   8  9  8 10 12 13 10  8
  16 17 18 18 20 17 22 20 24 25 24 26 20 21 18 16
These are the standard composition numbers of the following compositions (transposed):
  ()  (1)  (2)  (3)    (4)      (5)
           (2)  (2,1)  (3,1)    (4,1)
                (1,2)  (4)      (3,2)
                (3)    (2,2)    (3,2)
                       (1,3)    (2,3)
                       (1,2,1)  (4,1)
                       (2,2)    (2,1,2)
                       (4)      (2,3)
                                (1,4)
                                (1,3,1)
                                (1,4)
                                (1,2,2)
                                (2,3)
                                (2,2,1)
                                (3,2)
                                (5)
		

Crossrefs

Standard compositions are listed by A066099.
The version for partitions is A353832.
The run-sums themselves are listed by A353932, with A353849 distinct terms.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A353863 counts run-sum-complete partitions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Total/@Split[stc[n]]],{n,0,100}]

A114901 Number of compositions of n such that each part is adjacent to an equal part.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 5, 3, 10, 10, 21, 22, 49, 51, 105, 126, 233, 292, 529, 678, 1181, 1585, 2654, 3654, 6016, 8416, 13606, 19395, 30840, 44517, 70087, 102070, 159304, 233941, 362429, 535520, 825358, 1225117, 1880220, 2801749, 4285086, 6404354, 9769782, 14634907
Offset: 0

Views

Author

Christian G. Bower, Jan 05 2006

Keywords

Examples

			The 5 compositions of 6 are 3+3, 2+2+2, 2+2+1+1, 1+1+2+2, 1+1+1+1+1+1.
From _Gus Wiseman_, Nov 25 2019: (Start)
The a(2) = 1 through a(9) = 10 compositions:
  (11)  (111)  (22)    (11111)  (33)      (11122)    (44)        (333)
               (1111)           (222)     (22111)    (1133)      (11133)
                                (1122)    (1111111)  (2222)      (33111)
                                (2211)               (3311)      (111222)
                                (111111)             (11222)     (222111)
                                                     (22211)     (1111122)
                                                     (111122)    (1112211)
                                                     (112211)    (1122111)
                                                     (221111)    (2211111)
                                                     (11111111)  (111111111)
(End)
		

Crossrefs

The case of partitions is A007690.
Compositions with no adjacent parts equal are A003242.
Compositions with all multiplicities > 1 are A240085.
Compositions with minimum multiplicity 1 are A244164.
Compositions with at least two adjacent parts equal are A261983.

Programs

  • Maple
    g:= proc(n, i) option remember; add(b(n-i*j, i), j=2..n/i) end:
    b:= proc(n, l) option remember; `if`(n=0, 1,
          add(`if`(i=l, 0, g(n,i)), i=1..n/2))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 29 2019
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Min@@Length/@Split[#]>1&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
    g[n_, i_] := g[n, i] = Sum[b[n - i*j, i], {j, 2, n/i}] ;
    b[n_, l_] := b[n, l] = If[n==0, 1, Sum[If[i==l, 0, g[n, i]], {i, 1, n/2}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)
  • PARI
    A_x(N,k) = { my(x='x+O('x^N), g=1/(1-sum(i=1,N,sum(j=k+1,N, x^(i*j))/(1+ sum(j=k+1,N, x^(i*j)))))); Vec(g)}
    A_x(50,1) \\ John Tyler Rascoe, May 17 2024

Formula

INVERT(iMOEBIUS(iINVERT(A000012 shifted right 2 places)))
G.f.: A(x,1) is the k = 1 case of A(x,k) = 1/(1 - Sum_{i>0} ( (Sum_{j>k} x^(i*j))/(1 + Sum_{j>k} x^(i*j)) )) where A(x,k) is the g.f. for compositions of n with all run-lengths > k. - John Tyler Rascoe, May 16 2024
Showing 1-10 of 108 results. Next