cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A274903 Largest prime factor of 4^n + 1.

Original entry on oeis.org

2, 5, 17, 13, 257, 41, 241, 113, 65537, 109, 61681, 2113, 673, 1613, 15790321, 1321, 6700417, 26317, 38737, 525313, 4278255361, 14449, 2931542417, 30269, 22253377, 268501, 308761441, 279073, 54410972897, 536903681, 4562284561, 384773, 67280421310721
Offset: 0

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^3 + 1 = 65 = 5*13, so a(3) = 13.
		

Crossrefs

Cf. largest prime factor of k^n+1: A002587 (k=2), A074476 (k=3), this sequence (k=4), A074478 (k=5), A274904 (k=6), A227575 (k=7), A274905 (k=8), A002592 (k=9), A003021 (k=10), A062308 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n+1)): n in [0..35]];
    
  • Mathematica
    Table[FactorInteger[4^n + 1][[-1, 1]], {n, 0, 30}]
  • PARI
    a(n)=my(f=factor(4^n+1)[,1]); f[#f] \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = A006530(A052539(n)). - Michel Marcus, Jul 11 2016
a(2n) = A002590(n). a(2n+1) = A229747(n). - R. J. Mathar, Feb 28 2018
a(n) = A002587(2*n). - Amiram Eldar, Feb 01 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(531) in b-file from Amiram Eldar, Feb 01 2020
a(532)-a(583) in b-file from Max Alekseyev, Apr 25 2022, Mar 15 2025

A057938 Number of prime factors of 6^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 4, 2, 3, 3, 2, 2, 4, 3, 5, 3, 3, 6, 3, 3, 6, 4, 3, 4, 4, 4, 5, 5, 4, 9, 2, 3, 6, 3, 11, 5, 4, 3, 9, 5, 4, 7, 2, 3, 7, 5, 2, 7, 7, 6, 8, 4, 5, 10, 8, 6, 7, 3, 2, 6, 3, 2, 10, 3, 8, 11, 5, 5, 6, 7, 4, 5, 6, 5, 10, 5, 6, 11, 6, 6, 8, 4, 5, 8, 8, 5, 11, 4, 3, 16, 12, 4, 5, 5, 10, 4, 4, 5
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), this sequence (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(6^n + 1):n in [1..100]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[6^Range[100]+1] (* Harvey P. Dale, Mar 10 2013 *)

Formula

a(n) = A057955(2n) - A057955(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062394(n)). - Amiram Eldar, Feb 02 2020

A366720 Largest prime factor of 12^n+1.

Original entry on oeis.org

2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]

Formula

a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023

A366670 Smallest prime dividing 6^n + 1.

Original entry on oeis.org

2, 7, 37, 7, 1297, 7, 13, 7, 17, 7, 37, 7, 1297, 7, 37, 7, 353, 7, 13, 7, 41, 7, 37, 7, 17, 7, 37, 7, 281, 7, 13, 7, 2753, 7, 37, 7, 577, 7, 37, 7, 17, 7, 13, 7, 89, 7, 37, 7, 193, 7, 37, 7, 1297, 7, 13, 7, 17, 7, 37, 7, 41, 7, 37, 7, 4926056449, 7, 13, 7, 137
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

Formula

a(n) = A020639(A062394(n)). - Paul F. Marrero Romero, Oct 17 2023

A324941 Largest prime factor of 17^n + 1.

Original entry on oeis.org

2, 3, 29, 13, 41761, 101, 83233, 22796593, 184417, 5653, 63541, 87415373, 72337, 2001793, 100688449, 238212511, 52548582913, 45957792327018709121, 382069, 20352763, 1186844128302568601, 88109799136087, 6901823633, 1109309383381084655697725873, 48661191868691111041
Offset: 0

Views

Author

Vincenzo Librandi, Apr 05 2019

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(17^n + 1)): n in [0..40]];
    
  • Mathematica
    Table[FactorInteger[17^n + 1] [[-1,1]], {n, 0, 30}]
  • PARI
    a(n) = vecmax(factor(17^n+1)[, 1]); \\ Jinyuan Wang, Apr 05 2019

Formula

a(n) = A006530(A224384(n)).
Showing 1-5 of 5 results.