cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A248897 Decimal expansion of Sum_{i >= 0} (i!)^2/(2*i+1)!.

Original entry on oeis.org

1, 2, 0, 9, 1, 9, 9, 5, 7, 6, 1, 5, 6, 1, 4, 5, 2, 3, 3, 7, 2, 9, 3, 8, 5, 5, 0, 5, 0, 9, 4, 7, 7, 0, 4, 8, 8, 1, 8, 9, 3, 7, 7, 4, 9, 8, 7, 2, 8, 4, 9, 3, 7, 1, 7, 0, 4, 6, 5, 8, 9, 9, 5, 6, 9, 2, 5, 4, 1, 5, 4, 5, 4, 0, 8, 4, 2, 3, 5, 9, 2, 2, 4, 5, 6, 0, 8
Offset: 1

Views

Author

Bruno Berselli, Mar 06 2015

Keywords

Comments

Value of the Borwein-Borwein function I_3(a,b) for a = b = 1. - Stanislav Sykora, Apr 16 2015
The area of a circle circumscribing a unit-area regular hexagon. - Amiram Eldar, Nov 05 2020

Examples

			1.2091995761561452337293855050947704881893774987284937170465899569254...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), pp. 120-121.
  • L. B. W. Jolley, Summation of Series, Dover (1961), No. 261, pp. 48, 49, (and No. 275).

Crossrefs

Cf. A091682 (Sum_{i >= 0} (i!)^2/(2*i)!).

Programs

  • Mathematica
    RealDigits[2 Sqrt[3] Pi/9, 10, 100][[1]]
  • PARI
    a = 2*Pi/(3*sqrt(3)) \\ Stanislav Sykora, Apr 16 2015

Formula

Equals 2*sqrt(3)*Pi/9 = 1 + 1/6 + 1/30 + 1/140 + 1/630 + 1/2772 + 1/12012 + ...
Equals m*I_3(m,m) = m*Integral_{x>=0} (x/(m^3+x^3)), for any m>0. - Stanislav Sykora, Apr 16 2015
Equals Integral_{x>=0} (1/(1+x^3)) dx. - Robert FERREOL, Dec 23 2016
From Peter Bala, Oct 27 2019: (Start)
Equals 3/4*Sum_{n >= 0} (n+1)!*(n+2)!/(2*n+3)!.
Equals Sum_{n >= 1} 3^(n-1)/(n*binomial(2*n,n)).
Equals 2*Sum_{n >= 1} 1/(n*binomial(2*n,n)). See Boros and Moll, pp. 120-121.
Equals Integral_{x = 0..1} 1/(1 - x^3)^(1/3) dx = Sum_{n >= 0} (-1)^n*binomial(-1/3,n) /(3*n + 1).
Equals 2*Sum_{n >= 1} 1/((3*n-1)*(3*n-2)) = 2*(1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ...) (added Oct 30 2019). (End)
Equals Product_{k>=1} 9*k^2/(9*k^2 - 1). - Amiram Eldar, Aug 04 2020
From Peter Bala, Dec 13 2021: (Start)
Equals (2/3)*A093602.
Conjecture: for k >= 0, 2*sqrt(3)*Pi/9 = (3/2)^k * k!*Sum_{n = -oo..oo} (-1)^n/ Product_{j = 0..k} (3*n + 3*j + 1). (End)
Equals (3/4)*S - 1, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Integral_{x=0..Pi/2} tan(x)^(1/3)/(sin(2*x) + 1) dx. See MIT Link. - Joost de Winter, Aug 26 2023
Continued fraction: 1/(1 - 1/(7 - 12/(12 - 30/(17 - ... - 2*n*(2*n - 1)/((5*n + 2) - ... ))))). See A000407. - Peter Bala, Feb 20 2024
Equals Sum_{n>=2} 1/binomial(n, floor(n/2)); and trivially if "floor" is replaced by "ceiling". - Richard R. Forberg, Aug 30 2024
Equals Product_{k>=2} (1 + (-1)^k/A001651(k)). - Amiram Eldar, Nov 22 2024
Equals 2*A073010 = 1/A086089 = sqrt(A214549) = exp(A256923) = A275486/2. - Hugo Pfoertner, Nov 22 2024
Equals 1 - (1/6) * Sum_{n>=1} A010815(n)/n. - Friedjof Tellkamp, Apr 05 2025
Equals A248181 - 2. - Pontus von Brömssen, Apr 05 2025

A113062 Expansion of theta series of hexagonal net with respect to a node.

Original entry on oeis.org

1, 3, 0, 6, 3, 0, 0, 6, 0, 6, 0, 0, 6, 6, 0, 0, 3, 0, 0, 6, 0, 12, 0, 0, 0, 3, 0, 6, 6, 0, 0, 6, 0, 0, 0, 0, 6, 6, 0, 12, 0, 0, 0, 6, 0, 0, 0, 0, 6, 9, 0, 0, 6, 0, 0, 0, 0, 12, 0, 0, 0, 6, 0, 12, 3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 6, 6, 0, 0, 6, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 13 2005

Keywords

Comments

The hexagonal net is the familiar 2-dimensional honeycomb (not a lattice) in which each node has 3 neighbors.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 3*q + 6*q^3 + 3*q^4 + 6*q^7 + 6*q^9 + 6*q^12 + 6*q^13 + 3*q^16 + ...
		

References

  • A. F. Wells, Structural Inorganic Chemistry, Oxford, 5th ed., 1984; see Fig. 3.9(a.1).

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := 3*DivisorSum[n, {0, 1, -1, 1, 1, -1, -1, 1, -1}[[Mod[#, 9]+1]]&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 04 2015, after 1st PARI script *)
  • PARI
    {a(n) = if( n<1, n==0, 3 * sumdiv(n, d, [ 0, 1, -1, 1, 1, -1, -1, 1, -1][d%9+1]))};
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 3 * prod(k=1, matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==3, 2, if(p%6==1, e+1, !(e%2))))))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); abs( polcoeff( eta(x + A)^3 / eta(x^3 + A), n)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 6 * x * eta(x^9 + A)^3) / eta(x^3 + A), n))}; /* Michael Somos, Aug 15 2006 */

Formula

Moebius transform is period 9 sequence [ 3, -3, 3, 3, -3, -3, 3, -3, 0, ...].
Expansion of a(q^3) + c(q^3) in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Aug 15 2006
For n>0, a(n) = 3*b(n) where b(n)=A113063(n) is multiplicative and b(p^e) = 2 if p = 3 and e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 if p == 2, 5 (mod 6).
a(3*n + 2) = 0. a(3*n + 1) = A005882(n) = A033685(3*n + 1) = -A005928(3*n + 1). a(3*n) = A004016(n) = A005928(3*n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Dec 28 2023

Extensions

Definition corrected Michael Somos, Oct 17 2005

A123330 Expansion of eta(q^2) * eta(q^3)^6 / (eta(q)^2 * eta(q^6)^3) in powers of q.

Original entry on oeis.org

1, 2, 4, 2, 2, 0, 4, 4, 4, 2, 0, 0, 2, 4, 8, 0, 2, 0, 4, 4, 0, 4, 0, 0, 4, 2, 8, 2, 4, 0, 0, 4, 4, 0, 0, 0, 2, 4, 8, 4, 0, 0, 8, 4, 0, 0, 0, 0, 2, 6, 4, 0, 4, 0, 4, 0, 8, 4, 0, 0, 0, 4, 8, 4, 2, 0, 0, 4, 0, 0, 0, 0, 4, 4, 8, 2, 4, 0, 8, 4, 0, 2, 0, 0, 4, 0, 8, 0, 0, 0, 0, 8, 0, 4, 0, 0, 4, 4, 12, 0, 2, 0, 0, 4, 8
Offset: 0

Views

Author

Michael Somos, Sep 26 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 + 2*q^3 + 2*q^4 + 4*q^6 + 4*q^7 + 4*q^8 + 2*q^9 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]*(QP[q^3]^6/(QP[q]^2*QP[q^6]^3)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, -(-1)^d * kronecker( -3, d)))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^6 / (eta(x + A)^2 * eta(x^6 + A)^3), n))}
    
  • Sage
    A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] + 2*A[1] # Michael Somos, Sep 27 2013

Formula

Expansion of c(q)^2 / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
Expansion of phi(-x^3)^3 / phi(-x) where phi() is a Ramanujan theta function.
a(n) = 2*b(n) where b(n) is multiplicative and b(2^e) = (1 - 3*(-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
Euler transform of period 6 sequence [ 2, 1, -4, 1, 2, -2, ...].
Moebius transform is period 6 sequence [ 2, 2, 0, -2, -2, 0, ...].
a(n) = 2 * A123331(n) if n>0. (-1)^n * a(n) = A113973(n).
G.f.: Product_{k>0} (1 + x^k)/(1 - x^k) * ((1 - x^(3*k)) / (1 + x^(3*k)))^3.
G.f.: 1 + 2 * Sum_{k>0} x^k / (1 - x^k + x^(2*k)) = theta_3(-x^3)^3 / theta_3(-x).
From Michael Somos, Aug 11 2009: (Start)
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u - v)^2 - 2 * u * w * (v - w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (16/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A107760.
a(4*n) = a(3*n) = a(n). a(12*n + 10) = a(6*n + 5) = 0.
a(2*n + 1) = 2 * A033762(n). a(3*n + 1) = 2 * A033687(n). a(4*n + 1) = 2 * A112604(n). a(4*n + 3) = 2 * A112605(n). a(6*n + 1) = 2 * A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 4 * A121361(n). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Nov 14 2023

A217219 Theta series of planar hexagonal net (honeycomb) with respect to deep hole.

Original entry on oeis.org

0, 6, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 0, 12, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 12, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 12, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 105; s = 6 q QPochhammer[q^9]^3/QPochhammer[q^3] + O[q]^(terms+5); CoefficientList[s, q][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017, after Michael Somos *)
    CoefficientList[Series[6 q QPochhammer[q^9]^3/QPochhammer[q^3], {q, 0, 100}], q] (* G. C. Greubel, Aug 10 2018 *)
  • PARI
    my(q='q+O('q^100)); concat([0], Vec(6*q*eta(q^9)^3/eta(q^3))) \\ G. C. Greubel, Aug 10 2018

Formula

a(n) = 2*A033685(n) = 6*A045833(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Oct 13 2022

Extensions

Name edited by Andrey Zabolotskiy, Jun 21 2022

A373506 Decimal expansion of 4*Pi/3^(3/2) - Pi^2/9.

Original entry on oeis.org

1, 3, 2, 1, 7, 7, 6, 4, 4, 1, 0, 8, 0, 1, 3, 9, 5, 0, 9, 8, 1, 0, 4, 9, 4, 2, 3, 2, 4, 2, 5, 5, 2, 4, 1, 8, 3, 5, 6, 6, 1, 2, 1, 7, 2, 9, 9, 8, 5, 7, 8, 8, 4, 7, 5, 6, 0, 2, 8, 0, 7, 7, 6, 0, 9, 3, 7, 4, 9, 2, 5, 9, 4, 5, 6, 6, 3, 3, 7, 9, 2, 9, 0, 2, 3, 0, 8
Offset: 1

Views

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			1.321776441080139509810494232425524183566...
		

Crossrefs

Cf. A100044, A275486, A073016 (no n+1 denominator), A073010 (denominator n), A373507 (denominator n-1).

Programs

  • Maple
    4*Pi/3^(3/2)-Pi^2/9 ; evalf(%) ;
  • Mathematica
    RealDigits[4*Pi/3^(3/2) - Pi^2/9, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    4*Pi/3^(3/2) - Pi^2/9 \\ Amiram Eldar, Jun 10 2024

Formula

Equals Sum_{n>=0} 1/((n+1)*binomial(2n,n)).
The alternating case is Sum_{n>=0} (-1)^n/((n+1)*binomial(2*n,n)) = 8*log(phi)/sqrt(5)-4*log^2(phi) = 0.79537... where phi is the golden ratio.
Equals A275486 - A100044. - Stefano Spezia, Jun 07 2024

A377008 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(2/3)^(2*k).

Original entry on oeis.org

8, 8, 3, 1, 0, 5, 8, 1, 3, 9, 6, 7, 1, 2, 6, 2, 5, 5, 8, 8, 5, 0, 2, 3, 7, 3, 8, 8, 8, 5, 6, 2, 3, 2, 9, 0, 8, 2, 7, 0, 5, 9, 2, 4, 4, 9, 0, 1, 6, 9, 7, 9, 0, 2, 1, 5, 2, 9, 4, 1, 5, 9, 0, 0, 0, 2, 6, 8, 3, 5, 7, 3, 9, 9, 6, 3, 0, 2, 0, 6, 0, 6, 8, 4, 9, 2, 6, 2, 9, 2, 0, 4, 7, 7, 2, 8, 9, 4, 9, 6, 0, 4, 0, 5, 7
Offset: 0

Views

Author

Amiram Eldar, Oct 12 2024

Keywords

Examples

			0.88310581396712625588502373888562329082705924490169...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights, 2011, p. 272, eq. (29).

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[4*Pi/(3*Sqrt[3])], 10, 120][[1]]
    (* or *)
    RealDigits[Log[Gamma[1/3]*Gamma[5/3]], 10, 120][[1]]
  • PARI
    log(4*Pi/(3*sqrt(3)))
    
  • PARI
    log(gamma(1/3)*gamma(5/3))

Formula

Equals log(4*Pi/(3*sqrt(3))) = log(A275486).
Equals log(Gamma(1/3)*Gamma(5/3)).
Showing 1-6 of 6 results.