cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A209862 Permutation of nonnegative integers which maps A209642 into ascending order (A209641).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15, 16, 17, 18, 20, 24, 19, 21, 25, 22, 26, 28, 23, 27, 29, 30, 31, 32, 33, 34, 36, 40, 48, 35, 37, 41, 49, 38, 42, 50, 44, 52, 56, 39, 43, 51, 45, 53, 57, 46, 54, 58, 60, 47, 55, 59, 61, 62, 63, 64, 65, 66, 68, 72, 80, 96, 67, 69, 73, 81, 97, 70, 74, 82, 98, 76, 84, 100, 88, 104, 112, 71, 75, 83
Offset: 0

Views

Author

Antti Karttunen, Mar 24 2012

Keywords

Comments

Conjecture: For all n, a(A054429(n)) = A054429(a(n)), i.e. A054429 acts as a homomorphism (automorphism) of the cyclic group generated by this permutation. This implies also a weaker conjecture given in A209860.
From Gus Wiseman, Aug 24 2021: (Start)
As a triangle with row lengths 2^n, T(n,k) for n > 0 appears (verified up to n = 2^15) to be the unique nonnegative integer whose binary indices are the k-th subset of {1..n} containing n. Here, a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion, and sets are sorted first by length, then lexicographically. For example, the triangle begins:
1
2 3
4 5 6 7
8 9 10 12 11 13 14 15
16 17 18 20 24 19 21 25 22 26 28 23 27 29 30 31
Mathematica: Table[Total[2^(Append[#,n]-1)]&/@Subsets[Range[n-1]],{n,5}]
Row lengths are A000079 (shifted right). Also Column k = 1.
Row sums are A010036.
Using reverse-lexicographic order gives A059893.
Using lexicographic order gives A059894.
Taking binary indices to prime indices gives A339195 (or A019565).
The ordering of sets is A344084.
A version using Heinz numbers is A344085.
(End)

Examples

			From _Gus Wiseman_, Aug 24 2021: (Start)
The terms, their binary expansions, and their binary indices begin:
   0:      ~ {}
   1:    1 ~ {1}
   2:   10 ~ {2}
   3:   11 ~ {1,2}
   4:  100 ~ {3}
   5:  101 ~ {1,3}
   6:  110 ~ {2,3}
   7:  111 ~ {1,2,3}
   8: 1000 ~ {4}
   9: 1001 ~ {1,4}
  10: 1010 ~ {2,4}
  12: 1100 ~ {3,4}
  11: 1011 ~ {1,2,4}
  13: 1101 ~ {1,3,4}
  14: 1110 ~ {2,3,4}
  15: 1111 ~ {1,2,3,4}
(End)
		

Crossrefs

Formula

A344086 Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 4, 3, 2, 4, 1, 5, 3, 2, 1, 4, 2, 5, 1, 6, 4, 2, 1, 4, 3, 5, 2, 6, 1, 7, 4, 3, 1, 5, 2, 1, 5, 3, 6, 2, 7, 1, 8, 4, 3, 2, 5, 3, 1, 5, 4, 6, 2, 1, 6, 3, 7, 2, 8, 1, 9, 4, 3, 2, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 6, 4, 7, 2, 1, 7, 3, 8, 2, 9, 1, 10
Offset: 0

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (21)(3)
  4: (31)(4)
  5: (32)(41)(5)
  6: (321)(42)(51)(6)
  7: (421)(43)(52)(61)(7)
  8: (431)(521)(53)(62)(71)(8)
  9: (432)(531)(54)(621)(63)(72)(81)(9)
		

Crossrefs

Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of lex gives A118457.
The not necessarily strict version is A193073.
The version for reversed partitions is A246688.
The Heinz numbers of these partitions grouped by sum are A246867.
The ordered generalization is A339351.
Taking colex instead of lex gives A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts reversed strict partitions by Heinz number.
A329631 sorts strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}]

A187769 Triangle read by rows: equivalence classes of natural numbers, where numbers are equivalent when having equal numbers of zeros and ones in binary representation, respectively.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15, 16, 17, 18, 20, 24, 19, 21, 22, 25, 26, 28, 23, 27, 29, 30, 31, 32, 33, 34, 36, 40, 48, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 47, 55, 59, 61, 62, 63, 64, 65, 66
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 05 2013

Keywords

Comments

Row lengths are given by Pascal's triangle (cf. A007318), seen as flattened sequence, or for n > 0: length of n-th row = A007318(A003056(n-1),A002262(n-1));
1 <= i < j <= length of n-th row: A023416(T(n,i)) = A023416(T(n,j)), A000120(T(n,i)) = A000120(T(n,j)) and A070939(T(n,i)) = A070939(T(n,j));
the table provides a permutation of the natural numbers when seen as flattened sequence.
This sequence can be seen as an irregular triangle S(i,k) where row 0 = {1}, row n = { m = 2^(n-1)..2^n - 1 } sorted according to omega(A019565(m)), where omega = A001221. Under this arrangement, the rows can be further subdivided into segments of m with the same omega(m), which align with the original definition's triangle T. - Michael De Vlieger, Jan 03 2025

Examples

			See link.
		

Crossrefs

Rows of A187786, duplicates removed;
Cf. A099627 (left edge), A023758 (right edge).

Programs

  • Haskell
    import List (elemIndices)
    a187769 n k = a187769_tabf !! n !! k
    a187769_row n = a187769_tabf !! n
    a187769_tabf = [0] : [elemIndices (b, len - b) $
       takeWhile ((<= len) . uncurry (+)) $ zip a000120_list a023416_list |
       len <- [1 ..], b <- [1 .. len]]
    a187769_list = concat a187769_tabf
  • Mathematica
    {{0}}~Join~Table[SortBy[Range[2^n, 2^(n + 1) - 1], DigitCount[#, 2, 1] &], {n, 0, 8}] // Flatten (* Michael De Vlieger, Jan 03 2025 *)

A263327 A permutation of {0, 1, ..., 1023} corresponding to lexicographical ordering A262557 of numbers with decreasing digits A009995.

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 33, 34, 36, 40, 48, 65, 66, 68, 72, 80, 96, 129, 130, 132, 136, 144, 160, 192, 257, 258, 260, 264, 272, 288, 320, 384, 513, 514, 516, 520, 528, 544, 576, 640, 768, 7, 11, 13, 14
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 15 2015

Keywords

Comments

For n = 1..1023, A262557(a(n)) = A009995(n).
Cycle type = (1^12, 3^2, 10^2, 74, 912), i.e., this permutation has 12 fixed points, two 3-cycles and two 10-cycles, and two more cycles of length 74 and 912. See A263355 for the list of these cycles, A263383 for the length of the n-th cycle (ordered by increasing largest element).

Crossrefs

Cf. A009995, A262557, A263328 (inverse), A263329 (fixed points), A263383, A263355 (cycles).
Row 10 of A294648.

Programs

  • Haskell
    a263327 0 = 0
    a263327 n = head [x | x <- [1..1023], a262557 x == a009995' n]
    
  • Mathematica
    SortBy[Range[0, 1023], DigitCount[#, 2, 1] &] (* Paolo Xausa, Mar 31 2025 *)
  • PARI
    A263327=vecsort(A262557,,1) \\ Does not include a(0)=0. - M. F. Hasler, Dec 11 2019

Extensions

Edited by M. F. Hasler, Dec 11 2019

A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

First differs from the revlex (instead of colex) version for partitions of 12.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(12)
  4: (4)(13)
  5: (5)(23)(14)
  6: (6)(24)(15)(123)
  7: (7)(34)(25)(16)(124)
  8: (8)(35)(26)(17)(134)(125)
  9: (9)(45)(36)(27)(18)(234)(135)(126)
		

Crossrefs

Positions of first appearances are A015724 plus one.
Taking lex instead of colex gives A026793 (non-reversed: A118457).
Triangle sums are A066189.
Reversing all partitions gives A344090.
The non-strict version is A344091.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.

Programs

  • Mathematica
    Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]

A344085 Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

Differs from A339195 in having 77 before 66.

Examples

			Triangle begins:
   1
   2
   3   6
   5  10  15  30
   7  14  21  35  42  70 105 210
		

Crossrefs

Programs

  • Mathematica
    nn=4;
    GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]

A051459 Number of orderings of the subsets of a set with n elements that are compatible with the subsets' sizes; i.e., if A, B are two subsets with A <= B then Card(A) <= Card(B).

Original entry on oeis.org

1, 1, 2, 36, 414720, 189621927936000000, 2156695499113014719143826715127578624000000000000
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 15 2003

Keywords

Comments

a(7) has 127 digits and too large to include in sequence. - Ray Chandler, Nov 22 2003
From Valentin Bakoev, Nov 20 2017, May 17 2019: (Start)
a(n) is the number of possible orderings of the vectors of the n-dimensional Boolean cube (hypercube) {0,1}^n in accordance with their (Hamming) weights. For arbitrary vectors u, v of {0, 1}^n, if wt(u)
a(n) is also the number of all possible topological orders (sortings) of the directed acyclic graph (DAG) defined by the same poset: {0,1}^n and the relation weight order as it is defined and explained above.
Both comments correspond to the name of the sequence since the corresponding Boolean algebras are isomorphic. (End)

Crossrefs

Programs

  • Maple
    a:= n-> mul(binomial(n, i)!, i=0..n):
    seq(a(n), n=0..6);  # Alois P. Heinz, Nov 20 2017
  • Mathematica
    Array[Product[Binomial[#, i]!, {i, #}] &, 7, 0] (* Michael De Vlieger, Nov 20 2017 *)
  • Maxima
    a(n):= prod(binomial(n,k)!,k,0,n); /* Valentin Bakoev, May 17 2019 */
    
  • PARI
    a(n) = prod(k=0, n, binomial(n, k)!); \\ Michel Marcus, May 18 2019

Formula

a(n) = C(n, 0)! * C(n, 1)! * C(n, 2)! * ... * C(n, n)! = A000722(n) / A022914(n).
log(a(n)) ~ log(2) * n * 2^n. - Vaclav Kotesovec, Nov 24 2023

Extensions

More terms from Ray Chandler, Nov 22 2003
a(0)=1 prepended by Alois P. Heinz, Nov 20 2017

A091444 Concatenate binary vectors ordered first by length, then by the number of 1's and finally lexicographically.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1
Offset: 0

Author

Paul Boddington, Jan 10 2004

Keywords

Crossrefs

Programs

  • Mathematica
    c[n_, k_] := If[k == 0, {0}, If[k == n, {2^n - 1}, Join[c[n - 1, k], c[n - 1, k - 1] + 2^(n - 1)]]];
    b[n_] := If[n == 1, {0, 1}, Flatten[Table[c[n, k], {k, 0, n}]]];
    a[n_] := Map[PadLeft, IntegerDigits[Array[b, n], 2]];
    a[4] // Flatten (* Robert P. P. McKone, Aug 13 2021 *)
    Flatten[Table[SortBy[IntegerDigits[Range[0, 2^k - 1], 2, k], Total], {k, 4}]] (* Paolo Xausa, Jul 28 2025 *)
  • Python
    from itertools import product
    def sortby(x): return (len(x), x.count(1), x)
    def agen(maxvecdigits):
        for i in range(1, maxvecdigits+1):
            for t in sorted([p for p in product([0, 1], repeat=i)], key=sortby):
                yield from t
    print([an for an in agen(4)]) # Michael S. Branicky, Aug 13 2021

A344087 Flattened tetrangle of strict integer partitions sorted first by sum, then colexicographically.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 4, 4, 1, 3, 2, 5, 3, 2, 1, 5, 1, 4, 2, 6, 4, 2, 1, 6, 1, 5, 2, 4, 3, 7, 5, 2, 1, 4, 3, 1, 7, 1, 6, 2, 5, 3, 8, 6, 2, 1, 5, 3, 1, 8, 1, 4, 3, 2, 7, 2, 6, 3, 5, 4, 9, 4, 3, 2, 1, 7, 2, 1, 6, 3, 1, 5, 4, 1, 9, 1, 5, 3, 2, 8, 2, 7, 3, 6, 4, 10
Offset: 0

Author

Gus Wiseman, May 11 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (21)(3)
  4: (31)(4)
  5: (41)(32)(5)
  6: (321)(51)(42)(6)
  7: (421)(61)(52)(43)(7)
  8: (521)(431)(71)(62)(53)(8)
  9: (621)(531)(81)(432)(72)(63)(54)(9)
		

Crossrefs

Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of colex gives A118457.
The not necessarily strict version is A211992.
Taking lex instead of colex gives A344086.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).

Programs

  • Mathematica
    colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]

A344088 Flattened tetrangle of reversed strict integer partitions sorted first by sum, then colexicographically.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 2, 3, 1, 4, 5, 1, 2, 3, 2, 4, 1, 5, 6, 1, 2, 4, 3, 4, 2, 5, 1, 6, 7, 1, 3, 4, 1, 2, 5, 3, 5, 2, 6, 1, 7, 8, 2, 3, 4, 1, 3, 5, 4, 5, 1, 2, 6, 3, 6, 2, 7, 1, 8, 9, 1, 2, 3, 4, 2, 3, 5, 1, 4, 5, 1, 3, 6, 4, 6, 1, 2, 7, 3, 7, 2, 8, 1, 9, 10
Offset: 0

Author

Gus Wiseman, May 12 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (12)(3)
  4: (13)(4)
  5: (23)(14)(5)
  6: (123)(24)(15)(6)
  7: (124)(34)(25)(16)(7)
  8: (134)(125)(35)(26)(17)(8)
  9: (234)(135)(45)(126)(36)(27)(18)(9)
		

Crossrefs

Positions of first appearances are A015724.
Triangle sums are A066189.
The non-strict version is A080576.
Taking lex instead of colex gives A246688 (non-reversed: A344086).
The non-reversed version is A344087.
Taking revlex instead of colex gives A344089 (non-reversed: A118457).
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).

Programs

  • Mathematica
    colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
    Table[Sort[Reverse/@Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
Showing 1-10 of 18 results. Next