cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A127670 Discriminants of Chebyshev S-polynomials A049310.

Original entry on oeis.org

1, 4, 32, 400, 6912, 153664, 4194304, 136048896, 5120000000, 219503494144, 10567230160896, 564668382613504, 33174037869887488, 2125764000000000000, 147573952589676412928, 11034809241396899282944, 884295678882933431599104, 75613185918270483380568064
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2007

Keywords

Comments

a(n-1) is the number of fixed n-cell polycubes that are proper in n-1 dimensions (Barequet et al., 2010).
From Rigoberto Florez, Sep 02 2018: (Start)
a(n-1) is the discriminant of the Morgan-Voyce Fibonacci-type polynomial B(n).
Morgan-Voyce Fibonacci-type polynomials are defined as B(0) = 0, B(1) = 1 and B(n) = (x+2)*B(n-1) - B(n-2) for n > 1.
The absolute value of the discriminant of Fibonacci polynomial F(n) is a(n-1).
Fibonacci polynomials are defined as F(0) = 0, F(1) = 1 and F(n) = x*F(n-1) + F(n-2) for n > 1. (End)
The first 6 values are the dimensions of the polynomial ring in 3n variables xi, yi, zi for 1 <= i <= n modulo the ideal generated by x1^a y1^b z1^c + ... + xn^a yn^b zn^c for 0 < a+b+c <= n (see Fact 2.8.1 in Haiman's paper). - Mike Zabrocki, Dec 31 2019

Examples

			n=3: The zeros are [sqrt(2),0,-sqrt(2)]. The Vn(xn[1],...,xn[n]) matrix is [[1,1,1],[sqrt(2),0,-sqrt(2)],[2,0,2]]. The squared determinant is 32 = a(3). - _Wolfdieter Lang_, Aug 07 2011
		

References

  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf.
  • G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219 for T and U polynomials.

Crossrefs

Cf. A007701 (T-polynomials), A086804 (U-polynomials), A171860 and A191092 (fixed n-cell polycubes proper in n-2 and n-3 dimensions, resp.).
A317403 is essentially the same sequence.
Diagonal 1 of A195739.

Programs

  • Magma
    [((n+1)^n/(n+1)^2)*2^n: n in [1..20]]; // Vincenzo Librandi, Jun 23 2014
  • Mathematica
    Table[((n + 1)^n)/(n + 1)^2 2^n, {n, 1, 30}] (* Vincenzo Librandi, Jun 23 2014 *)

Formula

a(n) = ((n+1)^(n-2))*2^n, n >= 1.
a(n) = (Det(Vn(xn[1],...,xn[n])))^2 with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=2*cos(Pi*i/(n+1)), i=1..n, are the zeros of S(n,x):=U(n,x/2).
a(n) = ((-1)^(n*(n-1)/2))*Product_{j=1..n} ((d/dx)S(n,x)|_{x=xn[j]}), n >= 1, with the zeros xn[j], j=1..n, given above.
a(n) = A007830(n-2)*A000079(n), n >= 2. - Omar E. Pol, Aug 27 2011
E.g.f.: -LambertW(-2*x)*(2+LambertW(-2*x))/(4*x). - Vaclav Kotesovec, Jun 22 2014

Extensions

Slightly edited by Gill Barequet, May 24 2011

A086804 a(0)=0; for n > 0, a(n) = (n+1)^(n-2)*2^(n^2).

Original entry on oeis.org

0, 1, 16, 2048, 1638400, 7247757312, 164995463643136, 18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, 271732164163901599116133024293512544256
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 05 2003

Keywords

Comments

Discriminant of Chebyshev polynomial U_n (x) of second kind.
Chebyshev second kind polynomials are defined by U(0)=0, U(1)=1 and U(n) = 2xU(n-1) - U(n-2) for n > 1.
The absolute value of the discriminant of Pell polynomials is a(n-1).
Pell polynomials are defined by P(0)=0, P(1)=1 and P(n) = 2x P(n-1) + P(n-2) if n > 1. - Rigoberto Florez, Sep 01 2018

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990; p. 219, 5.1.2.

Crossrefs

Programs

  • Magma
    [0] cat [(n+1)^(n-2)*2^(n^2): n in [1..10]]; // G. C. Greubel, Nov 11 2018
  • Mathematica
    Join[{0},Table[(n+1)^(n-2) 2^n^2,{n,10}]] (* Harvey P. Dale, May 01 2015 *)
  • PARI
    a(n)=if(n<1,0,(n+1)^(n-2)*2^(n^2))
    
  • PARI
    a(n)=if(n<1,0,n++; poldisc(poltchebi(n)'/n))
    

Formula

a(n) = ((n+1)^(n-2))*2^(n^2), n >= 1, a(0):=0.
a(n) = ((2^(2*(n-1)))*Det(Vn(xn[1],...,xn[n])))^2, n >= 1, with the determinant of the Vandermonde matrix Vn with elements (Vn)i,j:= xn[i]^j, i=1..n, j=0..n-1 and xn[i]:=cos(Pi*i/(n+1)), i=1..n, are the zeros of the Chebyshev U(n,x) polynomials.
a(n) = ((-1)^(n*(n-1)/2))*(2^(n*(n-2)))*Product_{i=1..n}((d/dx)U(n,x)|_{x=xn[i]}), n >= 1, with the zeros xn[i], i=1..n, given above.

Extensions

Formula and more terms from Vladeta Jovovic, Aug 07 2003

A377857 Number of subwords of the form UUUD in nondecreasing Dyck paths of length 2n.

Original entry on oeis.org

0, 0, 0, 1, 5, 18, 60, 191, 589, 1775, 5257, 15360, 44394, 127171, 361595, 1021693, 2871245, 8031246, 22372344, 62096135, 171797257, 473928875, 1304007889, 3579517116, 9804791910, 26804181643, 73145473655, 199276078201, 542076556949, 1472491141770, 3994615719732
Offset: 0

Views

Author

Rigoberto Florez, Nov 09 2024

Keywords

Comments

A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.

Crossrefs

Programs

  • Mathematica
    Table[If[n<3,0,n Fibonacci[2n-5]-LucasL[2n-6]], {n,0,30}]

Formula

a(n) = n*F(2*n-5) - L(2*n-6) for n>=3, where F(n) = A000045(n) and L(n) = A000032(n).
G.f.: x^3*(1 - x)^2*(1 + x)/(1 - 3*x + x^2)^2.
a(n) = A317408(n-2)-A317408(n-3) = A030267(n-2)+A030267(n-3). - R. J. Mathar, Dec 16 2024

A317403 a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).

Original entry on oeis.org

1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1

Views

Author

Rigoberto Florez, Aug 26 2018

Keywords

Comments

Discriminant of Fibonacci polynomials.
Fibonacci polynomials are defined as F(0)=0, F(1)=1 and F(n)=x*F(n-1)+F(n-2) for n>1. Coefficients are given in triangle A168561 with offset 1.

Crossrefs

Programs

  • Magma
    [(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
  • Mathematica
    Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
  • PARI
    concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
    

A343543 a(n) = n*Lucas(2*n).

Original entry on oeis.org

0, 3, 14, 54, 188, 615, 1932, 5901, 17656, 52002, 151270, 435633, 1244184, 3528759, 9949058, 27907470, 77933552, 216784731, 600935076, 1660672257, 4576522540, 12580566138, 34504747354, 94440719589, 257998970928, 703593828075, 1915713858422, 5208304147686
Offset: 0

Views

Author

Harry Richman, Apr 19 2021

Keywords

Crossrefs

Cf. A000032, A005248 (L(2n)), A146005 (n*L(n)), A317408 (n*Fib(2n)).

Programs

  • Magma
    [n*Lucas(2*n) : n in [0..40]]; // Wesley Ivan Hurt, Apr 19 2021
    
  • Mathematica
    Table[n*LucasL[2*n], {n, 0, 30}] (* Amiram Eldar, Apr 19 2021 *)
  • PARI
    a(n) = n*(fibonacci(2*n+1)+fibonacci(2*n-1)) \\ Andrew Howroyd, Jan 01 2024

Formula

a(n) = n*A005248(n).
G.f.: x*(3 - 4*x + 3*x^2)/(1 - 3*x + x^2)^2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 19 2021

A317450 a(n)=(-1)^((n-2)*(n-1)/2)*2^((n-1)^2)*n^(n-3).

Original entry on oeis.org

1, 1, -16, -2048, 1638400, 7247757312, -164995463643136, -18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, -271732164163901599116133024293512544256, -13717048991958695477963985711266803110069141504, 3074347100178259797134292590832254504315406543889629184
Offset: 1

Views

Author

Rigoberto Florez, Aug 26 2018

Keywords

Comments

Discriminant of Pell polynomials.
Pell polynomials are defined as P(0)=0, P(1)=1 and P(n)=2xP(n-1)+P(n-2) for n>1.

Crossrefs

Programs

  • Mathematica
    Array[(-1)^((#-2)*(#-1)/2)* 2^((#-1)^2)*#^(#-3)&,15]
Showing 1-6 of 6 results.